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abstract 

Recently Glas and Verhelst (1989) introduced a genera! theoretica! framework for 

the construction of asymptotically x.2-dlstributed test statistics for item response 

models. As an example they proposed two statistics for the partial credit model 

wlth a normal ability distributlon. Also the statistlcs for the Rasch model for 

dlchotomous items proposed by Glas (1988) fit into the given framework. 

In the present paper the theory is applied to the construction of a statistic 

for some item response models for polytomous items, including the partial 

credit model. The statistic is deflned In a conditional maximum likelihood (CMU 

framework. 

An example concerning detection of item bias will be included. 

Key words: item response model, Rasch model, conditional maximum likelihood, 

model test, item bias. 
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1. Rasch models for polytomous items.

Consider the response of a person, indexed n, to an item, indexed i, which has m(i)+1 

response categories indexed j = 0,1, ... ,m(i). The response of person n wil be represented 

by an m(i)-dimensional vector of stochastic variables X . with elements ni 

X . = { 
1 if person n scores in category j on item i, 

nlJ o if th is is not the case,

for j = 1, ... ,m(i) . So if the respondent scores in category j = o, X .= O. ni 

Andersen (1973a) has shown that if there exists a (vector-valued) minimal sufficient 

statistlc R
n

(X m•···•X 
n i•····X nk) for the (vector-valued) person parameter &n' and the

sufficient statistic is symmetrie in its arguments, the multidimensional Rasch model 

(Rasch, 1961) necessarily follows. In the multidimensional Rasch model it is assumed that, 

for all items, response categories with the same index are associated with the same 

response tendency, i.e .. with the same element of & 
n 

Further it is assumed that every item relates to the same set of response 

tendencies and m(i)=m for i=1, ... ,k. Let 1ti�<1111, ... ,111j, ... ,rr1m), where 111j is a parameter of

item i associated with category j, and &' � (3 , ... ,3 , 1, ... ,3 ) , where 3 , 1 is a parameter n n1 nJ nm nJ 

of person n associated wlth category j. The main result derived by Andersen can be 

summarlzed by saying that lf, for j = 1, ... ,m , 1: X 
111 

Is sufflcient for 3 . , the model must
i nJ nJ 

have the form 

Pr(X. =x 11& ,111) = m n n 

exp( 1: x 111 ( 
3 . -11 1

11))J = 1 nJ nJ J 

1 + 1: exp(3 h-rr.h)
h=1 n 1 

In the sequel the response categorles j = 0,1,2, ... etc. will be associated with the item 

scores 0,1,2, ... etc. 

(1) 

Andersen (19n) has studied a unidimensional version of the model glven by (1) and 

has shown that if R � r j X .. is a sufficient statistic for .S- that is symmetrie in its n r,J rnJ n 
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arguments, the model is necessarily given by 

m 

Pr(X. =x . ,& ,1)
1
) = 

n1 rn n 

exp( L x 
I
.(j& -TJ.J) 

j=, nJ n IJ 
m 

1 + I: exp( h& -TJ.h) 
h = t n 1 

(2) 

Further Andersen shows that the so-called "'equidistant scoring rule·· is the only scoring 

rule that allows for a minimal sufficient statistic for the person parameter, which is 

symmetrie in its arguments. The equidistant scoring rule prescribes that the difference 

between two item scores associated with two response categories is constant f or all 

categories. For example, if m = 3, the category weights { o,t,2,3 } or { 0,2,4,6} are 

compatible wlth equidistant scoring, while the category weights { 0,2,3,5} are not. 

A different derivation of the unidimensional Rasch model for polytomous items is 

given by Masters (1902). This version of the model, called the partial credit model, is 

derived from the assumption that every category J (j > o) of an item can be seen as a 

step which is either taken, or not taken by the respondent. It is assumed that the 

probability of a persen scoring in category j rather than scoring in category j - t is a 

log is tic f unction of a person parameter 3 n and a parameter 6
1
J associated with category 

j of item i. Thus, if j >O, 

Masters (1902) shows that from (3) it follows that the probability of a persen with 

par ameter &n scoring in category j, j = 1, .. . ,m(i), on an item with parameter s
1
, 

S"1 ~ (6iI, ... ,81j' ... ,8
I
m(I) ) is given by 

Pr( X . = x . ,& ,S. ) = 
n1 rn n 1 

m(I) j 
exp( I: x .. ( I: (3 - 6. )) ) 

j = 1 nIJ p=t n Ip 
m(I) h 

1 + I: exp( I: (3 -6. )) 
h = 1 p=t n 1P 

Notice that if m(i)= m for i = t, ... ,k and the reparameterization lJ .. = i; 6. is applied, 
IJ p=, lp 

the models defined by (2) and (4) are equivalent, that is, (2) and (4) are alternative 

definitions of the same model. Although Andersen (19n) derives the model under the 

assumption that the numbers of response categories of the items are the same, 
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it will be shown that if this assumption is broadened to include items with different 

numbers of response categories, minimal sufficient statistics for the parameters will 

also exist. However, these minimal sufficient statistics are no longer symmetrie in 

their arguments. Generalizing Andersen's results to a broader class of response formats, 

however, is beyond the scope of the present paper. 

One of the main motivations for studying Masters' parameterization of the model 

is an interpretation of the parameters which Is not possible for Andersen's version. 

This interpretation can be derived from the model for dichotomous items, where the 

item parameter can be viewed as the point on the latent scale at which the probability 

of a correct response and the probability of an incorrect response are equal. 

An analogous interpretation can also be applied to the model for polytomous items. 

This is shown as follows. For every item a set of m(i)+t item characteristic functions 

are defined by 

d 
4,)&) = Pr(X .. =tl& ,S.) = 

1J n niJ n 1 

for j = 1, ... ,m(i) and 

4,
10

(&n) ~ Pr( X .= o 1 & , S.) = 
rn n 1 

exp( f. (& - a1h» 
h=1 n 

m(i) h 
1 + r exp( r (& - 8 I )) 

h = 1 p=t n P 

1 
m(I) h 

t + r exp( r (& - 8. )) 
h= t p=t n 1P 

It can be easily verified that, for j = t, ... ,m (i), 

4110-1>(&> = 41u<&> ~ 3 = 8u • 

So 6
1
J is the boundary value at which the probabllities of scoring in category j and 

category j-t are equal. 

(5) 

(6) 

(7) 

The notion of defining a dichotomous Rasch model for the probability of scoring in 

some category j rather than in j-1, and thus defining the associated item parameter as a 

boundery between two adjacent categories, has been identified by Masters and Wright 

(1984) as a centra! theme that unifies a general class of IRT models. As a genera! 

formulation they introduce the partial credit model and show that the following models 

can be wrltten as special cases: 
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(1) the rating scale model (Andrich, 1978a), i.e., the special case where 61j = a
1 
+ 'tj' 

(2) the binomial trials model (Andrich, 1978b), i.e., the special case where 

6
1
( 13

1 
+ln(j/(m(i)-j+1). 

(3) the Poisson counts model (Rasch, 19n), i.e., the special case where 6
1
( a

1 
+ ln(j). 

Although the models by Andrich (1978a&b) are beyond the main theme of this paper, it 

will be shown that the similarity between these models and the partial credit model 

makes it possible to adapt the estimation and testing procedures developed f or the latter 

for use with the former. The Poisson counts model, however, is excluded from thls 

adaptlon, because it differs from the others in the sense that m(i) is not bounded. 

The consequences of this feature will become clear later. 
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2. Another look at conditional maximum likelihood estimation. 

Consider a test of k items and let the stochastic vector X represent a response 

pattern, that is X'= ex; , ... ,x
1
·, ... ,XI< ), where x

1 
stands fora response to item i 

(if an arbitrary persen is considered, the index n will be dropped for convenience and 

X 
I 
is written as X. ) . The probability of observing response pattern x as a f unctlon n , 

of 3 and 11' = <11; .... :rij,···;qk) is given by 

with 

Pr( X= x l 3,,i) = exp(-x'11)exp(r(x)3) p
0
(3) , 

d k m(I) -1 

p
0
(&) = Il ( 1 + ! exp(h& -T1

1
h>) 

1 = 1 h= 1 

and r(x) the sum score associated with response pattern x, that is, r(x) g ! Jx.
1
. 

• 1 

Conditioning on R ( X) g ! j X .. results in the conditlonal probablllty 
1 

i IJ 

_ _ _ Pr(X = x l&,11) 
'Jtxlr = Pr(X-xlRCX)-r,11) - L Pr(X= xl&,11) 

= 

{ x I r(x)=r} 

! exp(-x'11) ' 
{XI r(x)=r} 

(8) 

(9) 

(10) 

where { x I r(x)=r} stands for the set of all response patterns leadlng to sum score r. 

lt will prove convenient to introduce the concept of an elementary f unctlon. Let K be the 

maximum score that can be obtalned on the test, so K = 1 m (i) , and let E ij g exp(- lJ lf . 
For r=o, ... ,K, the elementary function of order ris defined by 

r g 
r 

r exp(-x' 11> 
{ x I r(x)=r} 

(11) 

1t is assumed that elementary f unctions of an order less then zero are equal to zero. 

The following example may clarify this definition. For a test of three items with m(i) = 2, 

for i = 1, ... ,3 the elementary functions are given by: 
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ro = 1, 

f
1 

= E + E + E , 
11 21 31 

f = E E +E E +E E +E +E +E 
2 11 21 11 31 21 31 12 22 32 ' 

f = E E E +E E +E E +E E +E E +E E +E E 
3 11 21 31 12 21 11 22 12 31 11 32 22 31 21 32 ' 

f = E E E +E E +E E +E E E +E E E +E E 
4 12 21 31 12 22 12 32 11 22 31 11 21 32 22 32 ' 

f = E E E +E E E +E E E 
5 12 22 31 12 21 32 11 22 32 ' 

r s = E1l2l32 • 

The computation of elementary functions defined by (11) has been described by 

Andersen (1972) and Fischer (1974). 

Using these definitions, (10) can also be written as 

'ltxlr = 

Il x" 
E" IJ 

1 . IJ 
,) 

r 
r 

(12) 

From (10) or (12) it can be easily verlfted that within f!Nery score leNel r, the probabllities 

'7t I sum to one, i.e .. xr 

r 'ltxlr = 1 
{ x I r(x) = r} 

for r=o, ... ,K. Further, every respondent displays only one response pattern, and so, 

condltlonal on the sum scores, the sampling model is product-multinomial. 

(13) 

Birch C,953) and Haberman (1974) have shown that ML estimation procedures and statistica! 

testing procedures for parametric product-multinomial models can easily be transformed 

into equivalent procedures for multinomlal models. Applied to the present problem, the 

transformation can be carrled out as follows. For r = o, ... ,K. let N be the number of 
r 

persons in the sample obtainlng sum score r . Assume that N . for r = o, ... ,K. has a r 
multinomial distrlbutlon defined by the total sample size N and the probabllities 

A 

u , ... ,u , ... ,uK. Notice that the ML estimate of u is glven by u = n /N. 
o r r cl r 

The probability of response pattern x can now be glven as 'lt = u 'lt I , or 
x r xr 
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'ft g Pr(X=><IE,u) = 
)( 

II x .. 
U E .. IJ 
r . . IJ 

1 ' J 
r 

r 

wlth 1· g (s
11

, ••. ,Ekm(k)) and u' g (u
0

, ... ,ur•····•uK) . 

Let { x} stand for the set of all possible response patterns on the test. 

{14) 

Then the data can be represented by a vector of frequency counts N , which has 

elements N f or all x E { x } , where N is the number of respondents producing response 
X )( 

pattern ><. Suppose that the number of possible response patterns, that is, the number 

of elements in { x} , is equal to v. Further 'K is defined as a v-dimenslonal vector with 

elements 'lt , for all x E { x}. Stnce the probabllities 'lt sum to one, the vector of 
X X 

frequency counts N has a multinomial distribution defined by N and 'K. 

With these definltions, the CML estimation procedure can be brought within the well

establlshed framework of parametric multinomial models. The multinomial form of the 

distribution of N is not only practical for the derivation of estimation equatlons and 

asymptotlc confidence intervals, it will prove to be essential for the derivation of the 

distribution of statistics for the evaluation of model fit. It is well-known (see for instance 

Andersen, 1980, or Barndorff-Nielsen, 1978) that if the distribution function of the data 

belongs to an exponential family, ML estimation boils down to equating the realizations of 

the sufficient statistics with their expected values. It will now be shown that this 

convenient method for derivlng estimation equations can also be applied to the Rasch 

model. 

lf the dis tribution function of the counts of the response patterns belongs to an 

exponential family and the model is parameterized by an s-dimensional vector of 

parameters e. the probability of obs erving x, must have the form 

'lt = b(x)expCe't{x))/a(e) 
)( 

(15) 

where t(x) is a s-dimensional vector which is a function of >< only, b(x) is a function 

of x only, and a(e) is a function of e only. If the parameters are llnearly independent, 

that is, if there does not exist a linear transformation of e that leaves the probabilities 
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unchanged, the elements of , are called "canonical" or "natura!" parameters (see, for 

instance, Andersen, 1980, p.20). Let T be an s x v matrix with columns t(x) and let D 
'lt 

be a diagonal matrix of the elements of 'K. Bath for the derivation of estimation equations 

and the asymptotic distribution of test statistics, the following lemma will prove convenient. 

Lemma 1. à'Klà" = D T'- 'K'K'T'. 
'Jt 

Proof. Since all probabllities 'lt sum to one, the factor ace in (15) can be written 
-- X 

as l: b(x)exp("t(x)). Let y be some response vector belonging to {x}. Then 
{x} 

à1t là~j =t.(y)'lt -,t l: t.(x )'lt , for j =1, ... ,s and the result follows. 
y J y y { X} J X 

□ 

In the present sectlon, the lemma is used for deriving estimation equations, the relevance 

with respect to the derivation of the asymptotic distribution of test statistics will become 

dear in the next section. let n be a realization of N. The log-likelihood function of e, 

lnU,I n ) , can be wrltten as l: n In 'lt + c , where c is a constant which does not 
{ x} X X 

depend on ,. The partlal derlvatlves of lnU,ln) wlth respect to e are glven by 

àlnU,ln)/o,· = n'D-1(à'K/o,·) = n·o-1(0 T' -1E1t'T) = n'T' - n'D-1
1E1t'T'. 

'lt 'lt 'lt 'lt 
-1 

But D 'K = 1 , wlth 1 a v-dlmensional vector wlth all elements equal to one, and, as a 
'lt V V 

result, the estimation equatlons are given by n'T' = N1t'T', or more conventionally, 

Tn = NT'K. However, Tn is an s-dimensional vector of observed sufficient statistics 

and NT'K is its expectation, so the celebrated result that in an exponential family ML 

estimation is equivalent with matching expected and observed values of sufficient 

statistics has been derived again. 

d 
Returnlng to the Rasch model, for r = o, ... ,K, let w = In (u /f ) and 

,d . r r r 
, = (-l) , ... ,-l)k (k) ,w , ... ,c.>K ). Srnce only K-1 free Item parameters can be 

11 ,m -1 o - 1 

estlmated, llkm(k) Is not lncluded In , . For the same reason c.>K Is not lncluded In ,. 

Notice that in the present case the dimension of ,. which was defined as s, is equal 

to 2K-1. Let t(x) be defined byt(>c)'~ (x , ... ,xK ,e'(x))' where r(x) is the sum score 
1 -1 r 

associated with x and e'r(x) is a K-dimensional vector with all elements equal to zero, 

except the (r(x)+1)-th element, which is equal to one. With these definitions of , and t(x). 

'lt = exp(t(x)',) and it directly follows that the multinomial model defined by N and 'lt , for 
X X 

all x € { x}, belongs to an exponential family. 
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To derive the CML estimation equations for the item parameters, the structure 

of the matrix T must be specified in detail. Let v(r) be the number of response patterns 

leading to sum score r and let the ( 2K + 1 ) x v • matrix T be defined by 

0 X x2 ... X X XK 1 r K-1 
1 o· o' ... o' o' 0 

0 1' o' ... o· o' 0 

T* 
v(1) 

= 0 o· 1 ~(2)"" ~ o· 0 

0 o' o· ... 1~ (r) o' 0 

0 o· o· ... o' t' 
v(K-1) 

0 

0 o· o· ... o· o· 

where X is a K x v(r) matrix with as columns all response patterns leading to a sum 
r 

(16) 

score r, x k stands for the response pattern leading to a perfect score and 1v(r) stands 

for a v(r)-dimensional vector with all elements equal to one. The definltions of the other 

• • elements in T are now obvlous. Then T Is equivalent with T with the k-th and last rC1N 

deleted. Let r* be partloned as r*• = [ T Tl , T~] , wlth T 8 = [ o,X
1
,X2, ... ,Xr, ... ,XK_

1
,xK ]. 

The subscript of T is motivated by the fact that this matrix is assoclated with the 
Tl 

sufficlent statlstics f or the 11-parameters. The motlvation for the subsript of T is 
(a) 

simllar. Let { x I x.= 1} be the set of all possible response patterns wlth a response In 
1 

category j of the i-th item and let the probabilitles 1t in 'lt have the same ordering as 
)( 

the response patterns in T . Then the lj-th element of the k-dimensional vector T 'lt is 
Tl Tl 

glven by L '1t . Using (14) it follows that 
{x lx1r1} X 

= 
K Cl) r u e"r J/f 

r =o r IJ r- r 

(i) 
where r j Is an elementary symmetrie f unctlon of the order r-1 deflned by r-

(1) ~ 
E" f . IJ r-J r 

{ x I r(x) = r and XIJ = 1 } 

k x .. 
II E" IJ 

i = 1 IJ 

and { x I r (x) = r and x .. = 1 } stands for the set of all posslble response patterns wlth 
IJ 

a response In category j of Item 1, resultlng In sum score r . 
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A small example may clarify this assertion. Consider a test of three items with m(i)= 2, 

and let ,r be the vector with elements 'lt , x € { x I r(x) = r }. Then, for r = 2, X ,r is 
r X 2 2 

given by 

1 1 0 0 0 0 'lt E E + E E "2 E11 
rh> 1r 

101000 11 21 11 31 1 2 

0 0 0 1 0 0 'lt E E + E E V E r(2> r 
100010 11 21 21 31 = 2 21 1 2 

1 0 1 0 0 0 
'Jt 001010 

= (v/f
2

) E E + E E V E r(3>1r 
11 31 21 31 2 31 1 2 

0 0 0 0 1 0 'Jt 
010000 E12 

r (1> 1r V E 
2 12 0 2 

0 1 1 0 0 0 'Jt 
000100 E22 

V E f (2)/f 
2 22 0 2 

0 0 0 0 0 1 
'lt000001 E32 U E r C3>;r 

2 32 0 2 

Summing these vectors over r = o, ... ,K results in a vector with expressions equivalent 

to (17). Returning to the derivation of the CML estimation equatlons, the equation 

T n = NT 1E can be written in a more familiar form by introducing 
l} l} 

s .. 
g 

IJ 
r 

{XIX .. = 1} 
IJ 

n 
X 

for i = 1, ... ,k and J = 1, .. . ,m(i). Notice that s .. is the number of persons responding in 
IJ 

(19) 

category j of item i. It can be verified that the K-dimensional vector T n has elements 
l} 

slj , by observing that the product of n with the ij-th row of T ll Is equivalent to the 

right-hand sum of (19). In the same manner the elements of T ,r can be evaluated 
l} 

by applying (17). The vectors T n and T ,r can be evaluated analogously. Thus, the 
Ct) Ct) 

estimation equations T n = NT ,r can also be written as 

K (i) 
s

I1 
= N r u eI. r J /f 

r=o r ~ r- r 

for i = 1, ... ,k and j = 1, .. . ,m(i), excludlng i = k and j = m(k), and 

n = Nu , 
r r 

for r = o, ... ,K-1. Combining (20) and (21) results in the CML estimation equations 

K (i) 
s.j = r n Elj f . /f 

1 r = 0 r r-J r 

11 
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In the first section of this paper it could be seen that the rating scale model (Andrich, 

1978a) and binomial trials model (Andrich, 1978b) could be derived from the partial credit 

model by imposing linear restrictions on the item parameters. In the sequel some other 

examples of the use of linear restrictions will be sketched. Generally, imposing linear 

restrictions is equivalent with introducing 

(23) 

wlth ,c11l'~(l1 , ... ,l\k (k) ), dlmenslon(~)~dimension<,<11», and Hof full column rank. 11 m -1 
The estimation equations for these models can easily be derived by observing that if 

the CML estlmation equations are given by 

This will be returned to in Section 5, where it will be shown that it is especially the 

combination of linear restrictlons and Incomplete designs that proves to be frultful. 
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3. Testing the model. 

The problem of evaluating model fit in IRT models is aften solved within the 

well-established framework of the genera! multinomial model ( see, for instance, Bock 

and Aitkin, 198tl. This approach proceeds as fellows. Let N be the number of persons 
)( 

with response pattern ><. Further, let N be a vector of frequency counts with elements 

N for all x d x}, where { x } stands for the set of all posslble response patterns. 
)( 

Then N has a multinomial distribution defined by N and 1t , where N is the number of 

respondents and 1t a vector with as elements the probabilities 1tx of the response 

patterns. T esting the model agalnst a genera! multinomial alternative can by done by 

applying Pearson's X
2 

test 

(N -N1t )2 

X X 

N1t 
X 

or by using the asymptotically equivalent likelihood-ratio statistic 

G2 
= 2 l: N In ( N I (N 1t ) ) . 

{ x} X X X 

(26) 

(27) 

lf the probabilities in (26) and (27) are evaluated using BAN (best asymptotically normal) 

estimates, such as an ML estimate or a minimum ../ estimate, it can be shown (see, for 

lnstance, Bishop, Fienberg and Holland, 1975) that both statistlcs are asymptotlcally ../

distributed. 

For reasonable long tests, thls approach has two drawbacks, both related to the 

large number of possible response patterns. First, the expectation of N tends to have 

very small elements, and its realization, the vector of frequency counts n, tends to have 

very small elements and elements equal to zero. In such cases it is often suggested to 

pool patterns to obtaln expected frequencies which are sufficiently large. This pooling, 

however, is a f unction of the data itself, and the asymptotic distribution of a test 

statistic based on pooled data can hardly be derived. The second, and probably most 

serieus drawback, is that interpreting the causes of a possible misfit is hampered by 

the aggregation level of the test: the influence of particular items on the outcome of 

the test as well as other possible causes of misfit cannot be identified. 
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Glas (1988) and Glas and Verhelst (1989) evade these problems by defining test 

statistics which are based on some linear function of N and have power against specific 

model viola-tions. Let p be defined by p g N IN and let y be defined by y ~ N112 
( p- 1t), 

" where 'lt stands for 1f evaluated using a BAN estimate of , , the vector of all, say s, 
A -1 

model parameters. It can easlly be seen that (26) can be wrltten as y"D y, with D 
'Jt 'Jt 

a v x v dlagonal matrix of the elements 'Jt , f or all x E { x}. Given certaln regularity 
X 

conditions, thls statistlc has an asymptotlc x2 
-distrlbution with v - s - 1 degrees of 

freedom (see, for instance, Rao, 1973; Bishop, Fienberg and Holland, 1975). The aggregation 

level of this statistic is altered by defining the transformation d g Xy, where X is a u x v 

"matrix of contrasts" ( u < v) of rank u and d a u-dimensional "vector of deviates". 

Generally, the class of statistics has the form 

(28) 

where W Is the so-called "matrix of welghts", deflned by W g XD X', evaluated uslng a 
'Jt 

BAN estimate of,. Let A be a vxs matrix defined by AgD-112
(à,c/à,'), let 1 be a 

'Jt V 

v-dlmenslonal vector wlth all elements equal to one and let c be a u-dlmensional vector 

of constants. Further, Mm
112

X') stands for the linear manifold spanned by the columns 
1/2 'Jt 2 

of D X'. Glas and Verhelst (1999) proved that R has an asymptotlc x -dlstrlbutlon wlth 
1t 

u - s - 1 degrees of freedom if 
1/2 

1. the columns of A belong to M (D X' ) , and 
'Jt 

2. there exists a vector of constants c such that X • c = 1 
V 

Notice that the number of degrees of freedom is equal to the number of deviates on 

which the test is based, minus the number of parameters to be estimated, minus one. 

Using these principles Glas and Verhelst (1999) introduced two tests for the partial credit 

model which can be used in a, so-called, marginal maximum likelihood framework. In the 

present paper a test for the partial credit model will be presented which applies in a 

CML framework. The test to be presented can be viewed as a generalization of, and an 

improvement upon, a test for the Rasch model for dichotomous items presented by 

Glas (1999). The nature of the improvement will be discussed later. 

Let, for r = 1, ... ,K-1, i = 1, ... ,k and j = 1, ... ,m(i), M 
1
. be the number of persons 

r~ 
obtaining sum score r and responding in category j of item i. The counts M .. associated 

rij 

with the scores r = o and r = K will be considered later, because they are special in the 

14 



sense that there exists only one response pattern to obtain them and, as a consequence, 

for all i and j, Mrlj = o if r = o and Mrlm(i) = NK if r = K. These are, however, not the 

only restrictions on the counts M ... If r < j, M .. = o, because it is not possible to res-
rlJ rij 

pond in category j and obtain sum score r < j. In the same manner, it is not possible to 

respond in category j and obtain sum score r > K - m(i) + j. Therefore, these counts will 

be excluded, and only the counts M il , for r = j, ... ,K - m (i) + j , will be considered. 
riJ 

For the construction of test statistics, the theoretica! framework sketched above 

will be used. The starting point of the derivation is the multinomial model with probabili

ties 'lt defined by (14). The expectation of M .. can be derived by summlng (14) over the 
X ru 

set of all response patterns with x i( 1 resulting in sum score r, and multiplying by N. 

Using (17) it fellows that 

N !: 'lt 

{xl rCx)=rand x
1
(1} x 

(i) 
= Nu e"r ./f 

r11r-1 r 
(29) 

and, hence, 

(30) 

The fit of specific items to the model can be evaluated by, for j = 1, ... ,m(i) and 

r=j, ... ,K-m(i) +j, inspecting the scaled deviates drij g (Mrlj -E(Mrijl€>)1var(Mrljl€>
112

. 

The interpretation of the magnitude of d~j may be helped by the fact that, if only one 

item, one category, and one score level are considered,and no parameters have to be 

estlmated, d;lj is a standardlzed blnlomial variable. Squaring and summlng d;IJ CNer 

the approprlate range of sum scores yields an Index of Item fit that would be approxl-
2 mately x -dlstrlbuted, lf the assumptlons glven should hold. They do, of course, not hold, 

but, in conjunction with a formal test of model fit based on the dlfference between the 

observed and expected values of the counts M .. , the indices d ~- can be used f or ru ru 
ldentlfying Items that have contrlbuted most to a possible lack of model fit. 

A formal model test based on these deviates can be constructed as follows. First an 
(' '') 

elementary functlon f r'~'J-j' must be deflned. Let { X lr(x)=r and x,r1 and xj'r=1} stand 

for the set of all possible response patterns leading to sum score r ( r ::!!: j + j') with x
1
r 1 

and x
1
'j'=1. Then 
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(i,i') g 
E .. E ... , f .. , 1: (31) 

IJ IJ r-J-J {xlr(x)=r and xr=1 and xi",=1} 
. 1 J 

As al ready mentloned elementary f unctions of order less than zero are supposed to be 

zero. This definition will be used in the following theorem. 

Theorem 1. For r = 1, ... ,K-1, let d be a vector with elements defined by 

N
112

drlj~Mri(E(MrlJIÎ>. for ;=1, ... ,k and j=max(1,r+m(i)-K), ... ,min(m(i),r). 

The dimension of d is eg L [min(m(i),r)-max(1,r+m(i)-K)+1J. 
r r 1 

Let W be an e x e matrix. lf d .. is the p-th element of d , d 
1
., is the p'-th 

r r r riJ r r~ 
element of d (jij') and d 

1 
.... is the p"-th element of d (i;t'i'), the elements 

r r J r 
W (p,p), W (p,p') and W (p,p") of W are defined by 

r r r r 
d (i) w Cp,p> = v E,,l 

1
1 r r r ~ r- r 

W (p,p') g o and 
r 

d Ci,i') 
w (p,p") = V SUEf'J"r j ... / r r r ,, r- -J r 

Then R g 
1C 

K-1 
r "-1 

d' W d 
r r r 

r = 1 

2 has an asymptotlc x -dlstrlbutlon wlth 
K-1 
I: e - 2K +2 degrees of freedom. r 

r = 1 

The computation of the number of degrees of freedom will be dlscussed in the next 

section, where the proof of the Theorem is given. The following corollary can be used 

for models that can be derived from the unidimenslonal Rasch model for polytomous 

items by imposing linear restrictions on the item parameters. 
d 

Let ec11) = (-1111 , ••• ,-1Jlj'•··•-11k(m(k)-lt 

Corollary 1. If the item parameters are subject to linear restrictions of the form 

ec11) = H ~ , with ~ an s'-dimensional vector of parameters and H of rank s', 

the test statlstic R defined in Theorem 1 has an asymptotic x2
-distrlbution 

K 
1C 

-1 

wlth I: e - s' - K + 1 degrees of freedom. 
r 

r = 1 
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The test statistic defined in Theorem 1 is based on partitioning respondents in score 

groups. If the number of possible scores is large, it is often practical to create a 

partitioning with less classes. This can be done by combining score groups into a new 

subgroup. One reason f or doing this is the fact that if the number of possible scores is 

large, identification of the causes of misfit is hampered by the large number of deviates 

to be inspected. Another reason may be that for certain score levels, the expectation of 

the counts may be very low, which may invalidate the asymptotic results on which the 

derivatlon of the statistic is based. 

Suppose that the total sample of respondents is partitioned lnto G ( G > t) sub

groups and that, for g = t , ... ,G, l(g) is the smallest and u(g) is the largest score of the 

respondents included in subgroup g. Of course, 1(1) = t and u(G) = K-t. Further, it will 

prove convenient that the largest score included in the first subgroup is greater than, 

or equal to, max(m(l)), hat is uCt) ~ max(m(l)). and the smallest score included in the 

last subgroup is smaller than or equal to min(K-m(l)+1), that is l(G) ~ min(K-m(l)+1). 

The reason for introducing the last two assumptions will be commented upon after the 

following theorem. 

Theorem 2. Let d (g), g = 1, ... ,G, be K-dimensional vectors of deviates with 

. t/2 d u(g) " 
elements def1ned by N d(g)"i" = 1: M .. - E(M 1. 1,>, for i = t, ••• ,k. 

~ r=l(g) rlJ r~ 

Let the elements of G matrices of weights W(g) be deflned by 

g 
W Cg) (IJ,IJ) 

u(g) (1) 

1: U E"r . / r 
r=l(g) r IJ r-J r 

u(g) (') 2 

1: U [ E"r Ij/ r ] r 11 r- r 
r = l(g)+t 1 

d u(g) CD (0 
W(g)(ij,lj') = - r u [ E"r ./ r ][ E .. , r ., / r ] , wlth J;( j', 

1( ) r IJ r-1 r IJ r-J r 
r = g +1 

u(g) (') ('') r U [e"r I ./r J[e.,.,r I J,/f J. 
1 ( ) r IJ r-J r IJ r- r r= g +t 

Then R ~ (33) 
te 

has an asymptotic /-dlstrlbutlon with (G-1HK-1) degrees of freedom. 
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The degrees of freedom will be explained in the next section, where the proof of the 

theorem is given. 

The reason for the restriction uC1) ~ max(m(i)) is given by the observation that if 

u( t) were chosen such that some item i had a category j > u( t) , the diagonal element 

W( )Cij,ij) would be equal to zero, because r(I). = o if j > r. As a result WC ) would not 
g rî g 

be invertlble. Notlce, by the way, that in thls case d( ) .. is also equal to zero. 
g IJ 

In the same manner, it can also be verified that violating the restrictlon 

l(G) ~ min(K-m(i)+1) results in elements d(g)IJ and W(g)(ij,ij) equal to zero. 

Again, the version of the model test defined by (33) can be applied to the case of linear 

restrlctions on the item parameters. 

Corollary 2. lf the item parameters are subject to linear restrictions of the form 

e<11> = H ~ , with ~ an s'-dimensional vector of parameters and H has rank s', 

the test statistic R defined in Theorem 2 has an asymptotic x 2-distribution 
te 

with G(K-1) - s' degrees of freedom. 

In the next section the proof of Theorems 1 and 2 and their corollaries will be given. 
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4. The derivation of the asymptotic distribution of R . 
IC 

In the present section, Theorem 2 will be proved first. Then it will be sketched what 

alteratlons have to be made to prove Theorem 1. In either proof, the gener al framework 

developed in Glas and Verhelst ( 1989) will be used. The genera! framework relates to a 

multinomlal model with response patterns as categories, so let p be a v-dimensional 

vector wlth elements p , for all x , { x}, where p Is the observed proportion of persons 
X X 

with response pattern x. Further, let 'K be a v-dimensional vector with elements '1t , for 
X 

all x d x}, where 'Jt is the probability of observing response pattern x, defined by ( 15). 

Consider a test stat~stlc defined by R g d' W-1 d, where d g N112X(p -;) and W g XD X' . 
IC 1t 

The matrix of contrasts X is defined by 

X= (34) 

where X (g) is defined by 

xlCgl x1Cgl+1 ••• xr •• • xu(g) 

x<g> 
g o· 1' ... o· o' 

(35) 

o· o· . .. 1' 0 

o· o· ... o· 1' 

wlth X a K x v matrix with as columns all x E { x I r( x) = r}. Further, 1 is a vector wlth 
r r 

all elements equal to one, and o is a vector with all elements equal to zero. The 

dimensions of these vectors are equal to the number of columns in the matrices X , 
r 

r = l(g) , ... ,u(g). above them. In the sequel it will prove convenient to partition \g) as 

x<g> = [ :g] • 
g 

wlth z
9 

g [ xlCgl x 1Cg)+t ••• \ ••• xu(g)J. 

d -1/2 • First A = D o,t/or must be derlved. Let the matrix T be deflned as 
1t 
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0 X X ... X ... X XK 1 2 r K-1 
1 o· o· ... o· ... o· 0 

0 1' o· ... o· ... o· 0 

r• = 0 o' 1 1 ... d ... o' 0 (37) 

0 o· o· ... 1' ... o· 0 

0 o· o' ... o· ... 1' 0 

0 o· o· ... o· ... o· 

where X is a K x v matrix with as columns all x E { x I r ( x) = r } , and x K is the pattern 
r r 

with all responses in the highest possible category. 

Since the model belongs to an exponential famllly, it follows from Lemma 1, that 

o,r/of = D T'- ,r,r'T', where T Is equal to r• , with the K-th and last row deleted. The 
'lt 

asymptotic distribution of the test can now be derived by checking conditions 1 and 2 . 

• In the f ollowing lemma, T will be partltloned 

(38) 
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Lemma 2. The columns of A belong to Mm112
X') and there exlsts a vector c 

'lt 

such that X'c = 1 . 
V 

Proof. It will first be proved that the columns of D
112

T' belong to Mm112
X') 

1/2 • 'lt . 'lt 
by showing that the columns of Dn T • belong to th1s manlfold. From 

o· 
z· z· 0 

0112r, = 0112 1 
and M(D~

2 1 ) Mm112X') 
Z' Z' 

C 
'lt l) 'lt '1t 

g g 

ZG 0 ·z· 
G 

x' 
K 

1/2-, 1/2 
lt follows that the columns of D • 1 belong to M CD X') . That the columns 

'Jt l) 'Jt 

of o112r also belong to this manifold can be verlfied in the followlng manner. 
'Jt Ci) 

Conslder (35). A vector wlth all elements equal to one can be constructed from 

X(g) as X'(g) c 
9 

. with the first K elements of c 
9 

equal to the elements of the 

K-dimensional vector (1/l(g)) (1,2, ... ,m , ... ,1,2, ... ,m., ... ,1,2, ... ,mk) and the remaining 
1 1 

elements equal to (l(g)-r)/l(g) . for r = l(g)+1, ... ,u(g). Applying this procedure to all 

matrices in X, it can be shown that if c'=(1,c' , ... ,c' .... ,cG,1), X'c = 1 . 
1 Q V 

From the last observation it also follows that the columns of D 
11

2r· belong to 
'lt Ci) 

'"(D112X') F' 11 D112X' D112 t/2 d 
112 

'T' bel t m . ina y, c = 1 = 'K , an so 1t 1t ongs o 
1t 1t '1t V 

MCD X'). D 
'Jt 

A -1 
Next, lt wlll be shown that the test statlstic deflned by R = d' W d Is equivalent wlth 

1C 

the statistic defined in Theorem 2. 
d 

Let Pc' )= (p'1c ), ... ,p' , ... ,p' ·c )) ' where p has elements p = N IN, for all X d XI r(x)=r}. 
g g r ug r x x 

In the same manner, •c·g) g C1tj(g) , ... ,'K~, .. -,'K~(g)), where 1tr has elements 'lt'x , for all 

x E { x I r (x) = r}. Further, D 'JC (g) is the diagonal matrix of the elements of 1t (g) . From 

the structure of X, it follows that d' W-1 
d can also be written as ~ d ~ W-1 

d , 
1/2 A 9 : 1 g •g *9 

with W ~ = X(g) D 'JC Cg{Cg) and d •g = N X(g) C p (g) -'K Cg)) . 

The elements of N Y (g)( p(g) - i (g)) are glven by [ N r - E( Nr I Î ) ] , for 
A 

(1(9)+1) :s: r :s: u(g), and from N = n and u = n /N it follows that these elements are all 
r r r r 

equal to zero. Theref ore, d can be given by d • = (d ( ,,o), 
f/2 A ~ • 9 g 

with dCgt N Z(g)(p(g)- 1t(g)). Let the matrix W•g be partitloned 
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r 
D Z' g 'lt(g) g 

Y D z· 
9 'lt(g) g 

Z D Y'] g 'lt (g) g 

y D y· 
g ,t(g) g 

(39) 

As a concequence of the fact that d can be given by d' = Cd 'c ) ,o), 
g g g 

.G. A -1 .G. A A A A 

R = l: d' W d = 1.: d ' W - W W - 1 W - 1 d 
1C g = 1 (g) (g) (g) g: 1 (g)[ tg11 tg12 •g22 tg21 J (g) 

(40) 

and slnce w. is a diagonal matrix of the elements u , for r=l(g)+1, ... ,u(g), it can 
922 r 

be verified that the test statistic defined in the present section is equivalent with the 

statist ic defined in Theorem 2. The number of degrees of freedom of the test can be 

computed by counting the number of deviates on which the test is based, whlch is equal 

to the dimension of (1,d•' , ... ,d' , ... ,d'~,1). that is GK+2+ (K -1 -G), minus the 
1 *9 ~ 

dimension of , , which Is 2K- 1, minus one. Thus, the number of degrees of freedom is 

equal to (G-1HK-1). lf the item parameters are a llnear function of an s'-dlmensional 

parameter vector a , the number of degrees of freedom is equal to GK + 2 + ( K-1 - G) 

minus s', K, and one, so in this case, the resulting number of degrees of freedom is 

equal to G(K-1) - s'. 

Next, the proof of Theorem 1 will be sketched. In this case, K- 1 subgroups are made 

and, for every subgroup g, g = 1, .. . ,G, l(g) = u(g). As a result, the matrix of contrasts 

has the form 

X = (41) 

lf N has elements N , x E { x I r(x) = r }, X N will have elements M ;i• for i = 1, ... ,k and 
r x rr nJ 

J = 1, ... ,m (i). In the previous sectlon, however, lt was argued that for certaln 

combinations of i,j and r, M " is systematically equal to zero. The rows of X associated 
riJ r 

with these elements are equal to the zero-vector, and, as a result, X will be of 

incomplete rank, which obstructs using the theory sketched in section 3. Therefore, a 

• matrix X will be introduced, which can be derived from X by removing all rows which 
r r 
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are associated with a combination of the indices i and j for which r < j or r > K- m(i) +j. 

If X has L m(i) rows, X • will have e r<JVl/s. Let the matrix of contrasts x* be 
r i r r 

defined by 

1 • X 
1 • 0 

x• g x2 
x• (42) 

0 r 
x* 
K-I 

• Notlce that X' and X • have the same column space, since the latter Is derived from 

the former by removing zero-vectors. Therefore, proving that the columns of A belong 

to M<D112
x*·) is equivalent wlth proving that they belong to M<D112X'), and from the 

n • n 
existence of c such that X ' c = 1 it foll<JV11s that X' c = 1 . However, the last two 

V V 

proofs are given In Lemma 2, if G = K -1 Is chosen. 
• K-1 

The number of degrees of freedom Is computed as follows. Notlce that X has 2 + L e 
r =1 r 

rows, so the number of deviates on which the testing procedure is based is equal to 
K-1 

2+ r e . The number of parameters to be estimated Is 2K - 1 . As a result, the 
r 

r = 1 K-1 
number of degrees of freedom of thls verslon of the R test is L e - 2K +2. 

1C r 
r = 1 

In Glas C,999) it was shown that if a statistic of the form defined by (28) has an 

asymptotic x2-distribution for some parameterized multinomlal model, the statistlc will 

also be x,2-dlstrlbuted for models that can be derlved by imposing linear restrlctions on 

the parameters of the more genera! model. This proves corollaries 1 and 2. 
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5. Some generalizations of the estimation procedures. 

The present section will be mainly devoted to generalizing the estimation procedures for 

the unidimensional Rasch model for polytomous data, or partial credit model. to 

Incomplete designs and linear restrictions on the parameters. Let the items be indexed 

i = 1, ... ,k and the respondents by n = 1, ... ,N. A test administration design consists of T 

tests, indexed t = 1, ... ,T, and every test is identified by the pair [ { n }t' { i} t]. where { n }t 

is the set of the indices of the persons taking test t, and { i }t is the set of the indices 

of the items in test t. It is assumed that for every two tests t and t' , { n} t n { n} t'= 0 . 

Further, the design vector at has elements ati for i=1, ... ,k, where ati=1 if item idi}t 

and atl =o if this is not the case. First it will be assumed that the tests are linked via 

common items, which means that. for every two tests indexed t and t', there exists a 

sequence of indices z .z , ... ,zh, such that a'ta > o, a' a > o, ... ,a' at,> o. In the sequel 
1 2 z 1 z

1 
z

2 
zh 

lt will be shown that in some instances thls assumption may be dropped. 

Derivation of estimation equations can be done using the fact that, due to experi

mental independence, the complete log-likelihood function can be written as the sum of 

the log-likelihood functions of the tests. Applylng this principle to the CML estimation 

equations (22), the CML estimation equations in an incomplete design are given by 

(4-3) 

for i=1, ... ,k and j=1, ... m(i), with slj the observed number of responses in category j of 

item i, Kt the maximum score that can be obtained on test t, and ntr the number of 

persons obtaining score r on test t. Further, r t is an elementary f unction of order r, 

of the parameters e ij' ie{ i} t and j = 1, ... ,m(i) , rand rt(:~-J) is an elementary function 

of order r - j of the parameters elj , ie{ i }t and j = 1, ... ,m(i), where all parameters 

associated with item i have been set equal to zero. 
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As in the case of a complete design, the item parameters may be subject to 

linear restrictions of the form ec11)=H~. with ec11)'=(-lJ
11

, ••• ,-11Ij" .. ,-lJk(m(k)-1)), ~ an 

s-dimensional vector of parameters and H a matrix of full column rank. Again, the CML 

estimation equations for ~ are given by H'ti.(e(11)) =o, where ti.(e(11)) is the vector of 

first-order derivatives of the complete log-likelihood function with respect to ec11>. 

It may be interestlng to notice that if linear restrictions are imposed, the design 

needs no langer be necessarily linked. Consider an example of a design with two tests, 

where, for t = 1 and t = 2, ec11) (t) are item parameter vectors which have no elements in 

common, i.e., ,(1)) can be written as ,c11)'= c,(1))(1) ,e<11>(2))'. Solt is assumed that the 

tests are not llnked. Let 

[
H H ] ~~ (l)] = 11 12 ( ) 
H H ~ 2 

21 22 

Then the estimation equations are given by 

with .6. c,c 11> ( t)) the vector of first order derivatives of the log-llkellhood function with 

respect to ,c11) (t). Since the design is not llnked by common Items, the two systems 
(1) (2) 

of llnear equatlons. .6. c,c11J ) == o and .6. c,c11> ) = o, are Independent. lf H = o and 

(44) 

(45) 

12 ( ) 
H = 0, the system (45) Is equivalent wlth the two independent systems H' .6.(,(1)) 

1 
)= o 

21 ( ) 11 
and H~

2
.6.(,(1)) 

2 
) = o. So, generally speaking, lt is a necessary condition for the 

existence of a unique solution of ( 45), that there does not exist a permutation of the 

elements of ~ and an associated permutation of the rows of H, such that matrices H
12 

and H
21 

are obtained that are both equal to zero. Derlvatlon of sufficient condltions for 

the existence of a solution of the estimation equations for ~, however, is beyond the 

scope of the present paper, for this topic one is referred to Fischer(19a1,19a3). 
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The present section will be concluded with an example of the possibilities opened 

up by combination of an incomplete design and linear restrictions on the parameters. 

Suppose N persons are confronted with k' open-ended questions. The responses are 

judged by two referees. For i = 1, ... ,k', let Xnl be the judgement of the first, and Xn(k'+i) 

the judgement of the second referee with respect to the response of person n on item i. 

Clearly, Xni and Xn(k'+I) are not independent, for they both depend on the same 

response and the derivation of a likelihood-f unction is hampered by the fact that the 

product-rule cannot be used. To circumvent this problem, the respondents are divided 

into two groups. For the first group, only the judgements of the first referee are 

included in the analysis and for the second group, only the judgements of the second 

referee are considered. This results in the design displayed in Figure 1. The data which 

are not included in the study can be used for a cross-validation. 

The differences in the judgements of the two referees can now be modeled by imposing 

restrictions on the item parameters such as 

(1) Tl (k'+I)( llit 't , which Is a model without interaction between judges and items 

(2) ll(k'+i)j = Tlij + t 1 , which is a model with interaction between judges and items 

(3) Tl(k'+l)J = Tllj + tj . which is a model with interaction between judges and categories 

(4) ll(k' ·>· =Tl-•+ t 11 , which is a model with interaction between judges and combinations 
+1 J IJ IJ 

of items and categories. 

The models (1), (2) and (3) can be estimated both by CML and MML estimation 

procedures. For the MML estimation and testing procedure one is referred to Glas and 

Verhelst ( 1989). Uslng Fischer ( 1983, Theorem 3, p.16), it can be easlly verified that model 

(4) is not identified in a CML framework. In an MML framework, model (4) is a 

reparametrization of the Rasch 

persons 

judgements of 
referee 1 

lncluded 

not included 

judgements of 
referee 2 

not lncluded 

included 

Figure 1. Data collection design for studying interjudge reliability. 
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model rather than a restricted version. Further, in an MML framework, the referee 

effects in case (1) could also be modeled by the population parameters, introducing 

µ
1 
= IJ. as the mean of the ability distribution of the first group and µ

2 
= µ - t as the 

mean of the ability distribution of the second group. 

This strategy for analyzing referee effects can, of course, be generalized in various 

ways. One may, for instance, think of a design with more than two judges, or of 

interaction eff ects between judges and subgroups of respondents. With respect to this 

last example, one may, for instance, think of interaction effects between sex or race of 

the referee and the respondent. These generalizations will, however, not be worked out 

in detail in the present paper. 

6. Some generalizations of the testing procedure. 

To be able to use the theory for the construction of test statistics sketched in 

Section 3, the model for incomplete designs have to be brought within the framework of 

the multinomial model. For the conditional model defined by (14), this is accomplished by 

lntroducing the assumption that, if N tr is the number of persons obtaining a sum 

score r, Ntr for t = 1, ... ,T and r = o, ... ,Kt has a multinomial dlstribution characterlzed by 

N and the probabilities utr' t = 1, ... ,T and r = o, ... ,Kt. The probability of a response pattern 

on test t can now be given by 

Q Il Il xlj / r 'lttx - ut e,. t 
r.{}j ~ r 

1 E X t 

Let K be defined Kg ( f m.) . The number of parameters to be estimated is the sum 
i = 1 1 

(46) 

of K-1 Item parameters and ( t Kt)+ T-1 parameters assoclated wlth the dlstrlbutlon of 

N , that Is, ( ! K ) + T + K - 2 parameters have to be estimated. Thls will be used for 
tr t t 

computing the degrees of freedom of the test statistics. 

With the model brought within the framework of parameterized multinomial 

models, the method for constructing model tests sketched in section 3 can be applied. 

The generalization of the R test to incomplete designs is accomplished by construc-
1c 

ting a matrix of contrasts X, which has the form 
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x, 0 

X = (47) 

where \ is the usual matrix for testing a certain contrast in the case of one test. 

As a consequece of the structure of this super-matrix, the complete model test will be 

a sum of the statistics of the separate subgroups in the design. Thus, the R
1
c statistic 

is generalized 

R 
1C 

T 
! R(t) 

1C 
t=1 

wlth R(t) the statistic for the separate groups. Given the structure of the matrix of 
1C 

contrasts, the proof that the statistic defined above has an asymptotic ,/-distributlon 

is easily derived from the analogous proof for a complete design. 

(48) 

The number of degrees of freedom is computed as follows. First assume that 

no linear restrictions are imposed. Let the statistic be computed using Gt subgroups in 

test t. For every test t, the number of deviates is equal to 2 + G{t + (Kt- 1) - Gt, so the 

total number of deviates is T + !t Gt (Kt - 1) + !t Kt. Subtracting one plus the number 

of parameters to be estimated, which is ( !t Kt) + T + K - 1, results in 

!t Gt (Kt - 1) - (K - 1) degrees of freedom. In the same manner it can also be derlved 

that the number of degrees of freedom is !t Gt (Kt -1) - s', if s' linear functions of the 

item parameters are estlmated. 
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7. Some examples. 

A dichotomous item is defined to be biased if, for a given level of ability, the probability 

of a correct response differs over groups (Mellenbergh, 1982,1983). So though items may 

differ in difficulty and groups may differ in their ability to solve the item, but that does 

not define item bias. An item is only considered biased when it differs in difficulty 

between subjects of identical ability. The generalization to polytomous items is straight

forward. A polytomous item can be considered biased if the set of probabilities of 

scoring in the various categories of an item, f or a given ability level, differs between 

groups. Several techniques for detecting item bias have been proposed, all based on 

evaluating the differences response probabilities between groups conditional on some 

measure of abllity. The most generally used technique is based on the Mantel-Haenszel 

statistic (Holland and Thayer, 1988), others are based on loglinear models (Kok, 

Mellenbergh and van der Flier, 1985) or on IRT models (Hambleton and Rogers, 1989). 

The advocates of the Mantel-Haenszel and loglinear approach evaluate item difficulty 

conditional on sum scores. It is well-known that adopting the sum score as a sufficient 

statistic f or ability is equivalent with adopting the Rasch model (Fischer, 1984). The 

adherents of these approaches do not subscribe to this implication and do not actually 

use the Rasch model. Application of IRT to the problem of detecting item bias, on the 

othei- hand, suffers from the poor mathematica! foundation of test statistics. An 

exception is the technique proposed by Kelderman ( 1989), which is based on a so-called 

loglinear IRT model. One of the drawbacks of this approach is that it is difficult to use 

on larger tests. Therefore the present author will suggest an alternative approach based 

on the theory presented above. Combination of the method presented here and 

Kelderman's technlques remains a topic of further study. Two examples will be given, 

the first pertalns to dichotomous items, the second to polytomous items. 

The first example is the 1990 examination in reading comprehension in English for 

the Dutch lower genera! secundary educatlon, the MAVO-D level. The technique has also 

been applied to similar examinations of French and German, and to other educational 

levels (MAVO-C, HAVO and WvO), all with results analogous to the results presented. 

The analyses were carried out using a sample of 1000 boys and 1000 girls from the 

complete examinatlon population. The examination was made up of 50 dichotomously 

scored multiple choice items. The objective of the procedure is to detect items for which 
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the probability of eliciting a correct response is higher or lower than predicted from the 

estimated ability level, that is the score level, of either the boys or the girls. Essentially 

the procedure consists of two stages: (1) identifying Rasch-homogeneous subscales, and 

(2) evaluating the differences in response probabilities between boys and girls in homo

geneous ability groups. 

In order not to let item bias interf ere with searching for Rasch-homogeneous 

subscales, only the data of one of the two groups is used at first. In the present case 

the choice of a group is completely arbitrary, and the girls were chosen. In other 

instances one may start with a so-called reference group, and examine the responses 

of the so-called focal group in the second stage of the procedure. 

Starting with the complete examinatlon, item parameters were estimated and the R
1 

statistic was computed. Next, items with the largest fit indices were removed and the 

process was repeated until the R
1 

statistic was no longer significant. In the same 

manner the next Rasch scale was identifled by repeating the process using the removed 

items. Three subscales of 21, 14 and 12 items. respectively, were identified, three items 

could not be categorized. In Table 1 the evaluation of model fit for the largest subscale 

is summarized. 

lnsert T able 1 about here 

The total sample of f ernale examinees was divided into six score groups of approximately 

the same number of respondents. In the rows of T able 1 the scaled deviates of the 

items are given. lf no parameters had to be estimated these would be standard normal 

deviates. Squaring and summing scaled deviates over subgroups results in an index of 

item fit. Again if no parameters had to be estimated, the index would be chi-square 

distributed with six degrees of freedom. Of course, the assumption does not hold, but 

the fit indices serve their purpose in identifying the relative contribution of items to the 

R
1 

statistic. The value of the R
1 

statistic is glven at the bottom of the table, together 

with its degrees of freedom and its probability. 

Insert T able 2 about here 
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Next, the fit of the subscale was evaluated using the boys' data. The results are 

given in T able 2. Inspecting the value of the R statistic at the bottom of the table 
1 

reveals that the items fit a Rasch-scale, yet the fit is less perfect than with the girls. 

Especially item 12 seems to fit poorly, since it has a fit index of 19.1828 while the 5% 

critica! value of a chi-square variable with six degrees of freedom is 12.6. This item may 

be subject to bias, but nothing conclusive can be said, since both groups are not yet on 

one scale. So next the item parameters were estimated using both boys and girls. The 

results of the evaluation of model fit are shown in T able 3. It can be seen that the 

model does 

Insert T able 3 about here 

not fit for boys and girls together. Candidates for bias are item 21, which has a fit index 

of 12.3204 for girls and 13.9846 for boys, and item 50, with fit indices of 11.9820 and 23.1616 

for girls and boys, respectively. Inspection of the scaled deviates of item 21 shows that 

they are positive for girls and negative for boys. Since the scaled deviates are based 

on the difference of observed and expected frequencies, it can be concluded that the 

item favours the girls. In can be verified that this also holds for item 50. Item 12 is a 

different matter. It fits well for girls, but it does not fit for the boys. Inspection of the 

scaled deviates shows that the item discriminates too little f or the second group. Using 

the terminology of Mellenbergh (1982,1983) items 21 and 50 show uniform bias, white item 

12 is non-uniformly biased. However, the presence of biased items may still detract from 

the value of the sum score as a sufficient statist ic f or ability. Therefore in the next 

analysis the items 21 and 50 were considered to be different for boys and girls. For 

practical purposes, for the boys item 21 was labeled 121 and item 50 was labeled 150. In 

the parameter estimation item 21 and 121 and item 50 and 150 were treated as different 

items. In Table 4 the resulting 

Insert T able 4 about here 
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evaluation of model fit is shown. It can be seen that the items 21, 121, 50 and 150 show 

a good fit. Further, the R
1 

statistic drops from 299.1520 in the previous analysis to 

250.9180, which is considerable given a drop of two degrees of freedom. However, global 

model fit is still not perfect. To investigate whether this could be contributed to item 12, 

several analyses were run. Splitting item 12 into different items for boys and girls 

resulted in an R
1 

value of 245.3231 with 211 degrees of freedom, which still is poor. 

Removing the item from the boys· subscale did help ( R = 243 .159, df = 212), but good fit 
. 1 

was only achieved when the item was completely removed (R = 240 .734, df = 201). 
1 

Summing up, evidence has been produced that items 21 and 50 are uniformly biased in 

faveur of the girls, while item 12 is non-uniformly biased and discriminates too little for 

the boys. The second example concerns an examination in language comprehension of 

Dutch, which consisted of 20 polytomous items with 4 to 6 score points each. The 

procedure for detecting item bias is exactly the same as for dichotomous items, that is, 

first a number of Rasch- homogeneous subscales are identified using a procedure based 

on the R
1 
-statistic, then the diff erences in response probabilities between the two 

groups are evaluated for matched ability levels. Therefore the procedure will not be 

reiterated in detail, only the effects of the higher level of complexity of the data 

structure will be lllustrated by showing some tables of counts on which the procedure 

is based. In Table 5 observed and expected frequencies for four items with four 

response categories are shown for the group of girls with scores from one to four. 

Notice that every item yields a distinct scaled deviate for every response category. 

The results of this score group and other score groups are summarized in T able 6. 

Again, f or every item/ category combination an index of fit is computed by squaring and 

summing the scaled deviates over subgroups. An index of item fit can be computed by 

summing the item/category indices over categories. At the bottom of the table it can 

be seen that the items make up a Rasch-scale. The scale was found by a process of 

elimination simllar as the one described for dichotomous items. Introducing the boys 

resulted in R
1 
= 237.683 with 177 degrees of freedom, so the scale did not fit both groups 

together. Splitting one of the items resulted in a significant improvement ( R
1 
= 173.149 

with 161 degrees of freedom ) . 

The point to be made from inspection of the tables is that interpreting item bias 

becomes rather complicated for polytomous items. The response categories of the 
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items are associated with different numbers of score points to be acquired. lf an item 

faveurs one of the two groups, for this group some higher indexed categories will attract 

more responses that expected, while some lower indexed categories, but not necessarily 

the zero category, will attract f ewer responses than expected. Especially if the number 

of response categories is large, detecting which group is favoured by the item may be 

complicated. So while searching for Rasch-homogeneous subscales can be carried out in 

much the same mechanica! manner as for dichotomous items and biased items can be 

pinpointed in a statistically sound fashion, the interpretation of the results may, in most 

instances, be a tedious job. 
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TABLE 1: EVALUATION OF MODEL FIT FOR THE GIRLS 

OVERVIEW OF ITEM FIT 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 .9539 -.4894 - . 5201 .5075 -.7086 -.2740 2.2546 
2 .4536 -1.1639 .5201 -.2266 -.3598 1. 0431 3.0997 

12 2.4841 -.6653 .8950 .0609 -.6228 - . 9711 8.7490 
15 .0093 -1.6490 -.3877 -.1332 1.7119 1.1783 7.2063 
16 -1. 7211 .0470 .6594 .7867 1.1162 . 5821 5.6029 
17 1.8075 -1.0339 -1.0674 .6589 .1703 - . 6168 6.3188 
19 .4132 -.7691 .5828 .0394 .3213 - . 5801 1. 5433 
20 .2086 l, 1698 -1.1354 - . 0129 - . 7168 .5668 3.5363 
21 -.5188 ,1046 -.4980 .5179 - .1273 1. 2831 2.4588 
22 - . 5436 -1.2984 .3382 .4549 .9581 .7790 3.8274 
23 -1.6872 .6186 1.1860 .5612 -.2028 -.3745 5.1322 
24 .2516 .8687 .0289 -2.8093 .6866 .7670 9.7708 
25 - .3619 -.0812 1.3287 -,6914 - . 9440 ,7985 3.9098 
31 -.7423 1. 2181 -.5695 -.2051 .0513 .1544 2.4276 
33 - . 8157 1.2858 - . 0234 -.0003 -.2389 - .4710 2.5982 
35 .6263 .6051 - .1067 - .8476 - . 3516 - .3153 1. 7113 
38 -,3653 1.1492 .3123 .9173 -1.3554 - , 6291 4.6260 
44 .1139 -.7721 1.0760 - . 5791 1.6335 -1.6881 7.6204 
45 - . 6578 -.2516 -.8836 1. 5314 .9845 .1138 4.6043 
46 .9270 - .1541 -1.1481 .4572 -.3744 .4308 2.7358 
50 -.1925 - , 1120 .6091 .5568 -.0843 - .8846 1.5202 

OUTCOME OF THE Rl-TEST: 86.6060 
OF: 100 

PROB(Rl): .8278 
,. 



TABLE 2: EV;A.LU~TION OF MODEL FIT FOR THE BOYS 

OVERVIEW OF ITEM FIT 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 .9311 1.1718 -1.0582 - . 6757 -1. 4345 -.4748 6.0999 
2 1.2253 - . 2163 -.6966 .5540 -1.5503 - . 6434 5 .1577 

12 3.3095 1.5571 -.4026 - .1881 -1.1810 -2.0527 19 .1828 
15 -.1473 - . 0531 - . 0994 -.5097 . 7785 .5112 1.1616 
16 -1.6850 - . 0819 .6855 1.1445 .6832 1.1711 6.4638 
17 -.2890 - . 3729 .6726 -.7774 .4646 .5265 1. 7724 
19 -.3042 -.3734 -.3122 .9707 -.1183 ,9669 2.2205 
20 -.1854 1.0966 . 5024 -1.3662 .5111 -1.1663 4.9776 
21 -.4848 .0531 -.4130 .8175 .0751 1.0185 2.1197 
22 -1.4908 -.9060 . 7035 .5459 1.4769 .7352 6.5579 
23 -.4798 -1. 4734 - . 0343 .6455 2.6518 .0430 9.8528 
24 1.8194 .0015 .8486 -.6829 -1.9582 -.1241 8.3468 
25 - . 7278 .1847 - . 7220 1.6328 .1192 1.1711 5 .1369 
31 -.0640 -1. 0764 .0130 .4010 .8520 .9589 2.9690 
33 -1.2530 -.5896 1. 0272 1.4216 - .0815 - .1189 5.0145 
35 .0019 -.2783 - . 5291 -.2349 .6912 1.4809 3.0832 
38 . 9405 .8079 -1. 0827 .7022 - . 6131 - . 5897 3.9259 
44 - . 9390 .0741 1.3067 -1.4776 1.3753 -.4002 6.8298 
45 -1. 3715 .5779 . 7500 - .1956 - . 2765 1.0438 3.9819 
46 .5711 .3277 -.2117 -1.3302 -.4100 1.3701 4.2933 
50 1.8432 -.0435 -1.3524 .5167 -.6828 -1.4142 7.9617 

OUTCOME OF THE Rl-TEST: 111.1115 
DF: 100 

PROB(Rl): .2104 



TABLE 3: EVN.UATION OF MODEL FIT FOR THE GIRLS AND BOYS TOGETHER 

OVERVIEW OF ITEM FIT FOR GIRLS ( CONTRIBUTION TO Rl: 130.074 ) 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 1.7244 .3207 .1733 .9576 -.1286 .1874 4.0752 
2 .8133 -.7182 .7774 .0316 - . 0930 1 .1501 3.1141 

12 2 .1308 - . 9490 .6203 -.1644 - .8566 -1.1895 8.0014 
15 -1.2440 -2.9167 -1.4367 -.9622 1.0290 .5885 14.4497 
16 -1. 2700 .4569 .9806 1.0300 1.3350 . 7978 6.2628 
17 1.2749 -1.4665 -1. 4028 .4417 -.0326 -.7850 6.5562 
19 - . 3156 -1.4598 .0209 - .4118 - .1045 -.9599 3.3330 
20 -.3079 .5784 -1. 6701 - . 4891 -1.2380 .0809 4.9970 
21 1.3815 1. 7066 .9310 1 .4762 .9266 1.8960 12.3204 
22 -.3143 -.9100 . 7080 .7756 1.2837 1.0846 4,8541 
23 -1.3103 1.1072 1.6308 .9524 .2369 .0413 6.5671 
24 .4815 1.3067 .5285 -2.2975 1.2638 1.3755 10.98:59 
25 -1.5182 - . 9875 .7269 -1.2925 -1.5366 .4485 8.0415 
31 -1.1738 .9086 - .8103 - .3729 -.0887 .0590 3.0104 
33 -1.4433 .8154 -.4086 -.2876 -.5082 -.6887 3.7303 
35 .2778 .3773 -.2622 -.9539 -.4288 -.3557 1.5086 
38 -1.0188 .3880 - . 3912 .3180 -2.0240 -1.2460 7,0918 
44 ,7009 - .1445 1.4858 -.1377 1.8853 -1.1954 7.7218 
45 - . 3103 .1705 -.4704 1,7818 1.2614 ,3999 5,2724 
46 1.0910 .1695 -,7843 .7681 -.0107 .7615 3,0041 
50 1,6891 1. 5451 1.8556 1. 5211 .9745 .1878 11. 9820 

OVERVIEW OF ITEM FIT FOR BOYS ( CONTRIBlITION TO Rl: 169.078) 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 .1429 .4578 -1. 9754 -1. 2312 -2.0260 - .8142 10. 4154 
2 .8910 - . 6139 -1.1262 .3809 -1.8827 - .8319 6.8206 

12 3.6536 1.8760 -.0693 ,0365 -.9599 -1.8763 21.3167 
15 1.2141 1.2560 1.1722 .2649 1.3425 .8752 7.0639 
16 -2 .1641 - . 5236 .2779 .9465 .4875 1.0918 7.3602 
17 .2304 ,0789 1,0501 - . 5472 .6255 .6193 2.2364 
19 .4329 .3637 . 4137 1.3528 .2438 1.1572 3. 7193 
20 .3286 1. 7228 1.2150 -.8687 .9642 - .8032 6.8816 
21 -2.2642 -1. 6819 -2.2264 - . 0793 -.8335 .6093 13.9846 
22 -1. 7728 -1.3105 .2373 .2375 1. 2247 .5497 6.7750 
23 -.8958 -2.0297 -.6485 .2720 2.4106 -.2140 11. 2735 
24 1.5139 -.4505 .1777 -1. 2308 -2.5866 -.5827 11. 0716 
25 .4883 1.1351 .2262 1.9511 .5202 1.3125 7.3780 
31 .3383 - . 7239 .3048 .5454 .9579 1. 0146 2.9757 
33 - . 6315 -.0432 1.4764 1.6382 .1391 .0211 5.2838 
35 .3123 - . 0311 -.3319 -.1432 .7499 1.5039 3.0533 
38 1.6746 1.6249 -.1583 1.2835 - . 0403 -.1853 7 .1531 
44 -1.5946 -.5355 .7876 -1.9713 1.1673 -.6572 9.1303 
45 -1. 7687 .1566 .3040 -,5043 -.5634 ,9167 4.6574 
46 .3514 - .0138 - . 6677 -1. 6840 -.7343 1.1973 5.3781 
50 .2313 -1.8115 -3.3397 - . 4491 -1.7507 -2.3252 23.1616 

OlITCOME OF THE Rl-TEST: 299.1520 
DF: 220 

PROB(Rl): .0003 



TAf3LE 4: EVALUJ..TION OF MODEL FIT FOR THE GIRLS l\ND BOYS TOGETHER 

OVERVIEW OF ITEM FIT FOR GIRLS ( CONTRIBUTION TO Rl: 108.259) 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 1.8640 .4024 .2268 .9867 -.0987 .2055 4.7137 
2 .9140 - . 6567 .8047 .0536 -.0747 1.1559 3.2585 

12 2.3124 - . 8057 .7565 - . 0540 -.7431 -1.0827 8. 2961 
15 -1. 0273 -2.7513 -1.3225 - .8836 1.0842 .6272 12.7232 
16 -1.0947 .5389 1.0284 1.0593 1.3562 .8132 6 .1691 
17 1.4874 -1.3134 -1. 2937 .5076 .0245 -.7424 6.4206 
19 -.1007 -1.2921 .1403 -.3254 -.0320 -.9052 2.6256 
20 -.1369 .7462 -1.5334 -.3781 -1.1287 ,1670 4.3715 
21 -.5665 .1081 -.4818 .5338 - .1036 1.2999 2.5502 
22 - . 0976 - . 7524 .8125 .8462 1.3395 1.1223 5.0058 
23 -1.0935 1.2486 1. 7237 1.0173 .2944 . 0810 6.8540 
24 .6721 1.4807 .6687 -2 .1862 1.3617 1.4483 11.8228 
25 -1.3243 -.8765 .7879 -1.2387 -1. 4910 .4700 7 .1211 
31 -.9574 1.0581 -.6969 - . 2954 -.0250 .1020 2.6202 
33 -1.2268 .9526 -.3078 -.2188 -.4497 -.6477 3.1768 
35 .4950 .5304 -.1508 -.8722 -.3624 -.3100 1.5373 
38 -.8390 ,5599 -.2518 .4241 -1. 9193 -1.1662 6.3045 
44 .8582 -.0539 1.5312 - . 0984 1. 9041 -1.1690 8.0857 
45 -.1116 .2869 -.3882 1.8220 1.2965 .4264 5 .4280 
46 1.3101 .3331 -.6607 .8493 .0619 .8084 3.6426 
50 -.2397 - .1084 .6228 .5727 -.0606 -.8527 1.5158 

OVERVIEW OF ITEM FIT FOR BOYS ( CONTRIBUTION TO Rl: 142.659) 

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

1 -.0065 ,3647 -2.0668 -1.2743 -2.0648 - .8325 10.9853 
2 . 7994 -.6869 -1.1851 .3629 -1.9126 -.8459 7.0205 

12 3.4685 1. 7074 -.2384 -.0726 -1.0633 -1. 9552 19.9615 
15 1.0119 1. 0971 1. 0471 .2025 1.3028 .8534 5.7906 
16 -2.3426 -.6297 .2073 .9207 .4663 1.0850 8 .1696 
17 .0290 -.0806 .9314 - . 6115 .5844 . 5979 1. 9478 
19 .2295 .1871 .2662 1.2865 .1885 1.1318 3.1300 
20 .1631 1.5419 1.0371 -.9759 .8776 -.8630 5.9470 

121 -.4476 .0555 - . 4294 .8026 .0560 1.0075 2.0500 
22 -1. 9776 -1.4857 .1026 .1730 1.1828 .5252 7.8333 
23 -1.1002 -2.2048 - . 7826 .2117 2.3796 - .2411 12. 4493 
24 1.3273 -.6273 .0011 -1.3355 -2. 6811 - . 6356 11.5313 
25 .3219 1.0305 .1419 1.9269 .4946 1,3043 6.8445 
31 .1345 -.8964 .1700 .4827 .9139 .9926 2.9041 
33 -.8344 - . 2011 1.3634 1.5908 .0959 -.0032 5.1355 
35 .1084 - .2011 -.4722 - . 2113 .7041 1.4843 3.0186 
38 1.4832 1.4398 -.3342 1.1895 -.1208 -.2339 5.8689 
44 -1. 7692 -.6446 . 7196 -2.0221 1.1501 - . 6752 9.9313 
45 -1.9674 .0249 .2062 -.5549 -.6019 .9031 5.3996 
46 .1484 - .1920 - .8219 -1.7692 -.7959 1.1718 5.8713 

150 1.8787 -.0409 -1.3700 .5009 - . 7048 -1.4369 8.2205 

OUTCOME OF THE Rl-TEST: 250.9180 
DF: 218 

PROB(R1): .0624 



TABLE 5: OBSERVED AND EXPECTED FREQUENCIES FOR GIRLS 
WITH SCORES FROM 1 TO 4 (N=106) 

ITEM CAT OBSERVED EXPECTED DEVI'ATE SCALED DEVI'ATE 

5 1 58 62.798 -4.798 - .801 
2 103 101.106 1.894 .271 
3 37 40.616 -3.616 -.684 
4 23 16.906 6,094 1.617 

6 1 3 4.904 -1.904 -.869 
2 15 18.946 -3.946 -.953 
3 1 .677 .323 .394 
4 4 2.152 1.848 1.273 

8 1 4 4.061 -.061 -.031 
2 11 9.954 1.046 .340 
3 0 1.141 -1.141 -1.072 
4 4 3.315 .685 .382 

16 1 31 32 .329 -1.329 -.250 
2 70 80,004 -10.004 -1.417 
3 12 8.601 3.399 1.191 
4 0 .324 - .324 - .570 

Contribution to Rl-statistic 12.462 



TABLE 6: EVALUl\TION OF MJDEL FIT FOR THE GIRLS 

OVERVIEW OF ITEM FIT 

Item Cat Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit 

5 1 - .8012 1 .1094 -.3857 1.3026 .3918 -1.8118 7 .1545 
2 .2711 -1. 5841 -.7690 -1.5828 1.0782 1. 0824 8.0136 
3 - . 6836 .0620 .3207 .9624 - .8654 .3387 2.3638 
4 1.6167 .2311 .3062 -1.1487 -.3414 -.2196 4.2453 

6 1 -.8686 -.7641 .6655 -1.8085 1.9890 .3840 9.1556 
2 -.9531 .0652 .8538 -.4862 -1.0679 1.3126 4.7414 
3 .3935 -.3295 -1.3894 -1. 7324 1.7898 .1215 8.4134 
4 1.2732 1.1416 .4233 1. 8760 -1.2270 -.7171 8.6425 

8 1 -.0305 .0704 1. 6339 -.3781 -.8889 -.1944 3,6464 
2 .3402 .5850 - . 5103 -.8060 1.0640 -.7357 3.0412 
3 -1.0720 .4062 .9397 -1.8793 - .0891 .9194 6.5821 
4 .3822 -.9178 .3895 1.0137 .3428 -1.0993 3.4936 

16 1 -.2505 .2576 2 .1679 - .1985 -1.0951 .0076 6.0676 
2 -1.4170 .9864 -.1917 -.4398 .7858 .1700 3.8576 
3 1.1910 -1. 4205 -2.4318 -.6313 .5917 1.2228 11. 5938 
4 -.5703 1.0713 .2228 -.3024 .7482 - . 5754 2.5050 

OUTCOME OF THE Rl-TEST: 88.5175 
DF: 81 

PROB(Rl): .2744 
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