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abstract

Recently Glas and Verhelst (1989) introduced a general theoretical framework for
the construction of asymptotically xz-distributed test statistics for item response
models. As an example they proposed two statistics for the partial credit model
with a normal ability distribution. Also the statistics for the Rasch model for
dichotomous items proposed by Glas (1988) fit into the given framework.

In the present paper the theory is applied to the construction of a statistic

for some item response models for polytomous items, including the partial

credit model. The statistic is defined in a conditional maximum likelihood (CML)
framework.

An example concerning detection of item bias will be included.

Key words: item response model, Rasch model, conditional maximum likelihood,

model test, item bias.



1. Rasch models for polytomous items.

Consider the response of a person, indexed n, to an item, indexed i, which has m(i)+
response categories indexed j=0,,...,m(i). The response of person n wil be represented

by an m(i)-dimensional vector of stochastic variables X ni with elements

X . = { 1 if person n scores in category j on item i,
| 0 if this is not the case,

for j=1,...m(i) . So if the respondent scores in category j=o0, an=°'

Andersen (1973a) has shown that if there exists a (vector-valued) minimal sufficient
statistic Rn(X m,...,X r“....,X nk) for the (vector-valued) person parameter Gn. and the
sufficient statistic is symmetric in its arguments, the muitidimensional Rasch model
(Rasch, 1961) necessarily follows. In the multidimensional Rasch model it is assumed that,
for all items, response categories with the same indéx are associated with the same
response tendency, i.e., with the same element of On.

Further it is assumed that every item relates to the same set of response
tendencies and m(i)=m for i=1,...,k. Let “'ig(nh""'nlj""'nim)' where nu is a parameter of
. ,Gnm). where $

e nj
of person n associated with category j. The main result derived by Andersen can be

item i associated with category j, and 8""= (8 is a parameter

is sufficient for snj’ the model must

summarized by saying that if, for j=1,..m , ¥ Xnij
i

have the form

m
exp(j§1 xnij(snj_ "lj) ) o

Pr(X . =x |8 ,9)= =
ni nil"n’ i 1+ S expl®

h=1

nh nih)

In the sequel the response categories j=0,1,2,...etc. will be associated with the item

scores 0,1,2,...etc.

Andersen (1977) has studied a unidimensional version of the model given by (1) and

has shown that if Rng F]'anij is a sufficient statistic for -Sn that is symmetric in its



arguments, the model is necessarily given by
m .
exp(jéi1 xnij( J&n -nij))

m
1+ hzz 1exp(h&n -nih)

(2

Pr( Xni = xni Sn,'qi) =

Further Andersen shows that the so-called “equidistant scoring rule” is the only scoring
rule that allows for a minimal sufficient statistic for the person parameter, which is
symmetric in its arguments. The equidistant scoring rule prescribes that the difference
between two item scores associated with two response categories is constant for all
categories. For example, if m=3, the category weights { 0,1,2,3 } or {0,2,4,6} are

compatible with equidistant scoring, while the category weights {0,2,3,5} are not.

A different derivation of the unidimensional Rasch model for polytomous items is
given by Masters (1982). This version of the model, called the partial credit model, is
derived from the assumption that every category j (j»>0) of an item can be seen as a
step which is either taken, or not taken by the respondent. It is assumed that the
probability of a person scoring in category j rather than scoring in category j-1is a
logistic function of a person parameter &n and a parameter SI associated with category

J
j of item i. Thus, if j>o0,

exp(8, - SU)

Pr(xnU=1|xmj=1 or X g™ 88 = T3 xp(@, -5 (3)
Masters (1982) shows that from (3) it follows that the probability of a person with
parameter Sn scoring in category j, j=1,....m(i), on an item with parameter 8',

o d -
8‘— (sil""’slj""’sim(i) ) is given by '
m(i) J
e><p(j§1 X (qu(&n - Sip)))
PrX =x_|¢ 38)= (4)
ni “nil'n"i rri(i) (E(G & 5
1+ exp -3,
h=1 p=1 N P
Notice that if m(i)=m for i=1,....k and the reparameterization nij= i Sip is applied,

p=1
the models defined by (2) and (4) are equivalent, that is, (2) and (4) are alternative
definitions of the same model. Although Andersen (1977) derives the model under the

assumption that the numbers of response categories of the items are the same,



it will be shown that if this assumption is broadened to include items with different
numbers of response categories, minimal sufficient statistics for the parameters will

also exist. However, these minimal sufficient statistics are no longer symmetric in

their arguments. Generalizing Andersen’'s results to a broader class of response formats,

however, is beyond the scope of the present paper.

One of the main motivations for studying Masters' parameterization of the model
is an interpretation of the parameters which is not possible for Andersen's version.
This interpretation can be derived from the model for dichotomous items, where the
item parameter can be viewed as the point on the latent scale at which the probability
of a correct response and the probability of an incorrect response are equal.

An analogous interpretation can also be applied to the model for polytomous items.
This is shown as follows. For every item a set of m(i)+1 item characteristic functions

are defined by

exp( hé—w(s" - sih))

d N =
cl)ij(&n) = Pr(Xnij—ilx‘}n.Si) = = = 4 (5
1+ Yexpl X (8 -3.))
h=1 p=1t 1 P
for j=1,...ml() and
)9 Pr(x =0l8.5)= 1 ()
bl = PriX=0l3,.8) = m(i) g
1+ 3 expl 2, (8 -8 ))
h=r p=t N P
It can be easily verified that, for j=1,....m(i),
¢I(j_1)(3)=¢ij(&) & &=8U X (7)

So Sij is the boundary value at which the probabilities of scoring in category j and

category j—1 are equal.

The notion of defining a dichotomous Rasch model for the probability of scoring in
some category j rather than in j-1, and thus defining the associated item parameter as a
boundery between two adjacent categories, has been identified by Masters and Wright
(1984) as a central theme that unifies a general class of IRT models. As a general
formulation they introduce the partial credit model and show that the following models

can be written as special cases:



(1) the rating scale model (Andrich, 1978a), i.e., the special case where 8U=ﬁi+tj,
(2) the binomial trials model (Andrich, 1978b), i.e., the special case where
8U=Bi+|n(j/(m(i)~j+1).
(3) the Poisson counts model (Rasch, 1977), i.e., the special case where sij=Bi+'n(j)'
Although the models by Andrich (1978a&b) are beyond the main theme of this paper, it
will be shown that the similarity between these models and the partial credit model
makes it possible to adapt the estimation and testing procedures developed for the latter
for use with the former. The Poisson counts model, however, is excluded from this
adaption, because it differs from the others in the sense that ml(i) is not bounded.

The consequences of this feature will become clear later.



2. Another look at conditional maximum likelihood estimation.

Consider a test of k items and let the stochastic vector X represent a response
pattern, that is X '=(X1',...,Xi',....X';), where X i stands for a response to item i
(if an arbitrary person is considered, the index n will be dropped for convenience and

X ni is written as X i ). The probability of observing response pattern x as a function

of § and 9'= ('n'1....,1]'I,...,'r|'k) is given by
PriX=x|8,7)= expl-x1)explr(x)9) p°(8) ; (8)
with 4k m()
p(&)=l'[(1+2exp(h8 'q)) , (9)
0 =1 = ih

and r(x) the sum score associated with response pattern x, that is, rix) = ij

ij
Conditioning on R (X) ‘Z )X results in the conditional probability

x|r
{x|rx)=r}

- exp(-x'1)
5 on(-x1) (10)
{x|r(x)=r}
where {x|r(x)=r} stands for the set of all response patterns leading to sum score r.
It will prove convenient to introduce the concept of an elementary function. Let K be the
maximum score that can be obtained on the test, so K= Y. m(i) , and let eijg exp(-nu).
i
For r=o,...K, the elementary function of order r is defined by
d Ko .
r = p I e = > exp(-x'Y) . (1)
{xir)=r} i,j ! {xlr(x)=r}
It is assumed that elementary functions of an order less then zero are equal to zero.
The following example may clarify this definition. For a test of three items with m(i) =2,

for i=1,...,3 the elementary functions are given by:
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The computation of elementary functions defined by (11) has been described by

Andersen (1972) and Fischer (1974).

Using these definitions, (10) can also be written as

X..
I & U

N ) _ (12)

b3
x|r Iy
A

From (10) or (12) it can be easily verified that within every score level r, the probabilities

T sum to one, i.e.,
x|r
> n =1 (13)
{xirGd=r} x|r

for r=o,...K. Further, every respondent displays only one response pattern, and so,
conditional on the sum scores, the sampling model is product-multinomial.

Birch (1963) and Haberman (1974) have shown that ML estimation procedures and statistical
testing procedures for parametric product-multinomial models can easily be transformed
into equivalent procedures for multinomial models. Applied to the present problem, the
transformation can be carried out as follows. For r=o,...K, let Nr be the number of
persons in the sample obtaining sum score r. Assume that Nr , for r=o0,...K, has a
multinomial distribution defined by the total sample size N and the probabilities

Ve VpreeeiVyee Notice that the ML estimate of v, is given by 3 = nr/N.

N a™

The probability of response pattern x can now be given as M~ V" , or

x|r



X,
v, I eij ij
nxg Pr(X=x|€e,v) = —'IJ‘—_ , (14)
r
-g 'g
with -(e“,...,ekm(k)) and v -(vo,...,ur,....,uK).

Let {x} stand for the set of all possible response patterns on the test.
Then the data can be represented by a vector of frequency counts N, which has
elements Nx for all xe{x}, where Nx is the number of respondents producing response
pattern x. Suppose that the number of possible response patterns, that is, the number
of elements in {x}, is equal to v. Further x is defined as a v-dimensional vector with
elements 'ltx, for all x e {x}. Since the probabilities 'nx sum to one, the vector of
frequency counts N has a multinomial distribution defined by N and x.
With these definitions, the CML estimation procedure can be brought within the well-
established framework of parametric multinomial models. The muitinomial form of the
distribution of N is not only practical for the derivation of estimation equations and
asymptotic confidence intervals, it will prove to be essential for the derivation of the
distribution of statistics for the evaluation of model fit. It is well-known (see for instance
Andersen, 1980, or Barndorff-Nielsen, 1978) that if the distribution function of the data
belongs to an exponential family, ML estimation boils down to equating the realizations of
the sufficient statistics with their expected values. It will now be shown that this
convenient method for deriving estimation equations can also be applied to the Rasch
model.

If the distribution function of the counts of the response patterns belongs to an
exponential family and the model is parameterized by an s-dimensional vector of

parameters E, the probability of observing x, must have the form
%= b(x)exp(E't(x))/a(® , (15)

where t(x) is a s-dimensional vector which is a function of x only, b(x) is a function
of x only, and a(E) is a function of § only. If the parameters are linearly independent,

that is, if there does not exist a linear transformation of E that leaves the probabilities



unchanged, the elements of § are called "canonical” or “natural” parameters (see, for
instance, Andersen, 1980, p.20). Let T be an s xv matrix with columns t(x) and let D,lt
be a diagonal matrix of the elements of x. Both for the derivation of estimation equations

and the asymptotic distribution of test statistics, the following lemma will prove convenient.

Lemma 1. ox/0E = DnT'—t'x'T'.
Proof. Since all probabilities M, SUm to one, the factor a(§) in (15) can be written

as X, b(x)exp(E't(x)). Let y be some response vector belonging to { x}. Then
{x}

o /3E =t (y)m -m t.(x)n_, for j=1,...,s and the result follows. 0
y Ej Jyy y{%}’ m o for ] n result follows

In the present section, the lemma is used for deriving estimation equations, the relevance
with respect to the derivation of the asymptotic distribution of test statistics will become
clear in the next section. Let n be a realization of N. The log-likelihood function of §,

InL(E|n), can be written as X nx In 'th +c, where c is a constant which does not
{x}
depend on E. The partial derivatives of InL(E|n) with respect to § are given by

JInL(E|n) /€' = n'D_'(ox/3€) =n'D_'(D_ T' -xx'T') = n'T" - n'D_'xx'T" .

0 n T\ T
But D“t =1v, with 'v a v-dimensional vector with all elements equal to one, and, as a
result, the estimation equations are given by n'T' = Nx'T’, or more conventionally,
Tn =NTx. However, Tn is an s-dimensional vector of observed sufficient statistics
and NTxX is its expectation, so the celebrated result that in an exponential family ML
estimation is equivalent with matching expected and observed values of sufficient

statistics has been derived again.

Returning to the Rasch model, for r=o,...,K, let mrg In(vr/l‘r) and

E'g(—n",...,-nk m(k)-1'wo""'mK—1)' Since only K-1 free item parameters can be

estimated, nkm(k) Is not included in §. For the same reason @, Is not Included in §.

Notice that in the present case the dimension of E, which was difined as s, is equal

to 2K-1. Let t(x) be defined by t(x)'g (xl,....xK_1,e':(x)), where r(x) is the sum score
associated with x and elr(x) is a K-dimensional vector with all elements equal to zero,
except the (r(x)+1)-th element, which is equal to one. With these definitions of § and t(x),
nx=exp(t(x)'E) and it directly follows that the multinomial model defined by N and T for

all xe{x}, belongs to an exponential family.



To derive the CML estimation equations for the item parameters, the structure
of the matrix T must be specified in detail. Let v(r) be the number of response patterns

leading to sum score r and let the (2K+1) x v matrix T* be defined by

1
[0 X X, . X . Xk %k
1 0 o‘ . 0 . 0 0
\ 0 1v(1) .0 . 0 0
T = 00 v(z)'” () . 0 0 ; (16)
00 0 ’ 1V(r) w. 0 0
00 0 0 'v(K—1) 0
| 0 0 o' 0 o' LI

where Xr is a Kxv(r) matrix with as columns all response patterns leading to a sum
score r, X stands for the response pattern leading to a perfect score and ‘v(r) stands
for a v(r)-dimensional vector with all elements equal to one. The definitions of the other
elements in T are now obvious. Then T is equivalent with T with the k-th and last row
deleted. Let T' be partioned as T""=|:TTl T2 ] with To=[0X Xoee X e Xy % |-
The subscript of T_q is motivated by the fact that this matrix is associated with the
sufficient statistics for the n-parameters. The motivation for the subsript of Tm is
similar. Let {xlxi=1} be the set of all possible response patterns with a response In
category j of the i-th item and let the probabilities L in ® have the same ordering as

the response patterns in TTI' Then the ij~th element of the k-dimensional vector T_x is

given by o % - Using (14) it follows that
{xIx. =1}
ij
i 0)
b = X ve, 1Ty’ Tr (17)
{xlx } r=o
where I‘:'_)J is an elementary symmetric function of the order r-1 defined by
W d Kk x
i l"r_. = )X I € i (18)
)l {xIrG)=r and x, =1} i=1 "

i
and {xIr(x)=r and xij=1 } stands for the set of all possible response patterns with

a response In category ] of item I, resulting in sum score r.

10



A small example may clarify this assertion. Consider a test of three items with m()=2,

and let tr be the vector with elements nx, xe{x|rix)=r}. Then, for r=2, Xz’z is

given by
(110000 " 101000 -811821+ €131 | V2 &y I‘f') /[‘2
000100 T 0010 2 Cafa | = | V28 I'1(2) 1‘2
tot1o000|m o = (Uz/rz) € €art €63y Y, €, rl(a)/re
000010 1:010000 By VB I‘(”/l"
011000 o T— Ben v, ezzrz?':/r
L0 00001 ] [%p001. 32 . vaeszroa/r /

Summing these vectors over r=0,...,K results in a vector with expressions equivalent
to (17). Returning to the derivation of the CML estimation equations, the equation

Tnn = NTn'll: can be written in a more familiar form by introducing

d

" nx s (19)
) {X|XU=1}

s
for i=1,....,k and j=1,...,m(i). Notice that sij is the number of persons responding in
category j of item i. It can be verified that the K-dimensional vector TT] n has elements
SU' by observing that the product of n with the ij-th row of TTI is equivalent to the
right-hand sum of (19). In the same manner the elements of T“'lt can be evaluated
by applying (17). The vectors Tmn and Tmt can be evaluated analogously. Thus, the

estimation equations Tn= NT x can also be written as

(i)

s, = N v E / , (20)
ij z:o rj fr ~J
for i=1,....,k and j=1,....m(i), excluding i=k and j=mi(k), and
n = Nv_, (21
r r

for r=o0,...,K-1. Combining (20) and (21) results in the CML estimation equations
K (M

Sij = rZo"reU I‘rJ I‘r (22)

N



In the first section of this paper it could be seen that the rating scale model (Andrich,
1978a) and binomial trials model (Andrich, 1978b) could be derived from the partial credit
model by imposing linear restrictions on the item parameters. In the sequel some other
examples of the use of linear restrictions will be sketched. Generally, imposing linear

restrictions is equivalent with introducing
E(n) =HB (23)

with E('q)'g('q"....,nkm(k)_‘). dimension(B) <dimension(E(n)), and H of full column rank.

The estimation equations for these models can easily be derived by observing that if

a® 9 ainL(eln)oE (24)
the CML estimation equations are given by

ANLE[n) /3B = (SE/3B*)AINL (EIn)/dE=H'AB =0 . (25)

This will be returned to in Section 5, where it will be shown that it is especially the

combination of linear restrictions and incomplete designs that proves to be fruitful.

12



3. Testing the model.

The problem of evaluating model fit in IRT models is often solved within the
well-established framework of the general multinomial mode! ( see, for instance, Bock
and Aitkin, 1981). This approach proceeds as follows. Let Nx be the number of persons
with response pattern x. Further, let N be a vector of frequency counts with elements
Nx for all xe{x}, where { x } stands for the set of all possible response patterns.
Then N has a multinomial distribution defined by N and ® , where N is the number of
respondents and T a vector with as elements the probabilities T of the response
patterns. Testing the model against a general multinomial alternative can by done by

applying Pearson's X2 test

: (N, - Nm )*
X'= (26)
N~
{x} x
or by using the asymptotically equivalent likelihood-ratio statistic
2 _
G =2% N In(N /N=)). (27)

{x}

If the probabilities in (26) and (27) are evaluated using BAN (best asymptotically normal)
estimates, such as an ML estimate or a minimum x2 estimate, it can be shown (see, for
instance, Bishop, Fienberg and Holland, 1975) that both statistics are asymptotically xz-
distributed.

For reasonable long tests, this approach has two drawbacks, both related to the
large number of possible response patterns. First, the expectation of N tends to have
very small elements, and its realization, the vector of frequency counts n, tends to have
very small elements and elements equal to zero. In such cases it is often suggested to
pool patterns to obtain expected frequencies which are sufficiently large. This pooling,
however, is a function of the data itself, and the asymptotic distribution of a test
statistic based on pooled data can hardly be derived. The second, and probably most
serious drawback, is that interpreting the causes of a possible misfit is hampered by
the aggregation level of the test: the influence of particular items on the outcome of

the test as well as other possible causes of misfit cannot be identified.

13



Glas (1988) and Glas and Verhelst (1989) evade these problems by defining test
statistics which are based on some linear function of N and have power against specific
model viola-tions. Let p be defined by p d N/N and let y be defined by y d NVZ(p-;\t).
where % stands for % evaluated using a BAN estimate of E, the vector of all, say s,
model parameters. It can easily be seen that (26) can be written as y'aﬂ_‘y, with D'u
a v xv diagonal matrix of the elements LI for all xe{x}. Given certain regularity
conditions, this statistic has an asymptotic x2 ~distribution with v-s -1 degrees of
freedom (see, for instance, Rao, 1973; Bishop, Fienberg and Holland, 1975). The aggregation
level of this statistic is altered by defining the transformation d d Xy, where X is a uxv
“matrix of contrasts” (u<v) of rank u and d a u-dimensional “"vector of deviates”.

Generally, the class of statistics has the form
R=dwW d (28)

where W is the so-called "matrix of weights”, defined by W d XD_X", evaluated using a

BAN estimate of §. Let A be a vxs matrix defined by AQD:/a(at/aE'). let % be a

v-dimensional vector with all elements equal to one and let ¢ be a u-dimensionai vector

of constants. Further, M(D;I/ZX') stands for the linear manifold spanned by the columns
of D::ZX'. Glas and Verhelst (1989) proved that R has an asymptotic xz-dlstribution with

u-s-1 degrees of freedom if

1. the columns of A belong to M(D;t/ZX'), and

2. there exists a vector of constants ¢ such that X'e=1 .

Notice that the number of degrees of freedom is equal to the number of deviates on
which the test is based, minus the number of parameters to be estimated, minus one.
Using these principles Glas and Verhelst (1989) introduced two tests for the partial credit
model which can be used in a, so-called, marginal maximum likelihood framework. In the
present paper a test for the partial credit model will be presented which applies in a
CML framework. The test to be presented can be viewed as a generalization of, and an
improvement upon, a test for the Rasch model for dichotomous items presented by

Glas (1988). The nature of the improvement will be discussed later.

Let, for r=1,...K-1, i=1,...k and j=1,...mli, Mrij be the number of persons
obtaining sum score r and responding in category j of item i. The counts Mrij associated

with the scores r=0 and r = K will be considered later, because they are special in the

14



sense that there exists only one response pattern to obtain them and, as a consequence,

foraliand j, M =0 ifr=0and M, = N_ if r=K. These are, however, not the
rij rim( K

only restrictions on the counts Mrij' If r<j, Mrij =0, because it is not possible to res-

pond in category j and obtain sum score r ¢j. In the same manner, it is not possible to

respond in category j and obtain sum score r» K -m(i) +j. Therefore, these counts will

be excluded, and only the counts Mr , for r=j,....K-m(i)+j, will be considered.

i
For the construction of test statistics, the theoretical framework sketched above

will be used. The starting point of the derivation is the multinomial model with probabili-

ties T defined by (14). The expectation of Mrij can be derived by summing (14) over the

set of all response patterns with x,=1 resulting in sum score r, and multiplying by N.

i
Using (17) it follows that
E(M, |€) = N b T, = Nv ei.I‘:iz./I‘r (29)
) {x! r(x)=rand xU=1} )
and, hence,
A _ A A(i) A
E(MﬂjI() = nreul‘r_]/l'r ; (30

The fit of specific items to the model can be evaluated by, for j=1,...m() and

ates 428 (M -EM_[§ 3l
r=j,...K-m(i) +]j, inspecting the scaled deviates d”J (Mrij E(MrU|E))/VaF(MrUIE) .

The interpretation of the magnitude of dr may be helped by the fact that, if only one

o
i
item, one category, and one score level are considered,and no parameters have to be
estimated, d:ij is a standardized biniomial variable. Squaring and summing d:ij over
the appropriate range of sum scores yields an index of item fit that would be approxi-
mately xz—dlstributed. if the assumptions given should hold. They do, of course, not hold,
but, in conjunction with a formal test of model fit based on the difference between the
observed and expected values of the counts Mrij , the indices d:ij can be used for
identifying items that have contributed most to a possible lack of model fit.

A formal model test based on these deviates can be constructed as follows. First an
r(-i:ij.)-j' must be defined. Let {x|r(x)=r and X1 and xi.J.=1} stand

for the set of all possible response patterns leading to sum score r (r2j+j') with X =1

j

elementary function T’

and x‘.j.=1 . Then

15



e ro d ) M5y

v {xlr(x)=r and Xij=1 and Xi.j.=1} i !

(31

As already mentioned elementary functions of order less than zero are supposed to be

zero. This definition will be used in the following theorem.

Theorem 1. For r=1,. K -1, let d be a vector with elements defined by
e, d

N dj Mj E(M IE) forl—l, k and j=max(1,r+m()-K),...minlm(),r).

The dimension of d |s e d Z [mln(m(l) r)-max(t,r+m(i)- K)+1]
Let W be an e xer matrlx If d . i is the p-th element of d d rij
element of dr (#j) and drl'j" is the p"-th element of dr (i# i'), the elements
V\{. (p,p), Wr (p,p) and W (p,p“) of Wr are defined by

Wr (p,p) d V_€ I‘(')/I‘

rijr-j
Wr (p,p") d 0 and
= g @i,i*)
W ol = v iy l"r-J-J /T
d K-1 o
Then R * r§1 d W d
. K-1
has an asymptotic x° -distribution with 3, e - 2K +2 degrees of freedom.
r=1

The computation of the number of degrees of freedom will be discussed in the next
section, where the proof of the Theorem is given. The following coroliary can be used

for models that can be derived from the unidimensional Rasch model for polytomous

items by imposing linear restrictions on the item parameters.
d._ = -
Lt 2l = Nygeeees "ij""' nk(m(k)-ﬂ)'
Corollary 1. If the item parameters are subject to linear restrictions of the form
E(m) =HB , with B an s'-dimensional vector of parameters and H of rank s',

the test statistic R1c defined in Theorem 1 has an asymptotic xz—distribution
K-1

with X e -s' -K+1 degrees of freedom.
r=1
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The test statistic defined in Theorem 1 is based on partitioning respondents in score
groups. If the number of possible scores is large, it is often practical to create a
partitioning with less classes. This can be done by combining score groups into a new
subgroup. One reason for doing this is the fact that if the number of possible scores is
large, identification of the causes of misfit is hampered by the large number of deviates
to be inspected. Another reason may be that for certain score levels, the expectation of
the counts may be very low, which may invalidate the asymptotic results on which the

derivation of the statistic is based.

Suppose that the total sample of respondents is partitioned into G (G> 1) sub-
groups and that, for g=1,...,G, l(g) is the smallest and u(g) is the largest score of the
respondents included in subgroup g. Of course, (1) =1 and u(G) =K-1. Further, it will
prove convenient that the largest score included in the first subgroup is greater than,
or equal to, max(m(i)), hat is u(1) 2 max(m(i)), and the smallest score included in the
last subgroup is smaller than or equal to min(K-ml(i)+1), that is I(G) £ min(K-m(i)+1).
The reason for introducing the last two assumptions will be commented upon after the

following theorem.

Theorem 2. Let d(g)' g =1,...,G, be K-dimensional vectors of deviates with

u(g)
elements defined by N/ %d, . & z M -EM |z) for i=1,...k.
(9)ij i) rij
Let the elements of G matrices of weights W(g) be defined by
ulg) u(g)
W, () d ¥ urt-:i.rr(l’,/rr - v Lo ("/r]
9 r=1I(g) ) ) "l(g)+1
u(g) ][ ]
W G = - X v e..l‘ /I‘ €. /T with j# J',
(g r=1g)+1 rLijr-j ij’ r j
and, if i#i,
u(g) u(g)
d (i,i" (l)
W, (i) = vee ' /T - 32 v [e rl /I‘ ][e ]
(g) r= () rij i or=j=j" r r=lg)+1 ij r=j i’ r]
Then R_$ Zd w ' d (33)

1 (@ (g (g
Cg g g g

has an asymptotic x 2_distribution with (G-1)(K-1) degrees of freedom.
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The degrees of freedom will be explained in the next section, where the proof of the
theorem is given.

The reason for the restriction u(1) 2 max(m(i)) is given by the observation that if
u(1) were chosen such that some item i had a category j>u(1), the diagonal element

A

W(g) (ij,ij)) would be equal to zero, because I‘r(g =0 if j>r. As a result W(g) would not

be invertible. Notice, by the way, that in this case d is also equal to zero.

(g)ij
In the same manner, it can also be verified that violating the restriction

1(G) £ min(K-m(i)+1) results in elements d(g)lj and W(g)(ij,ij) equal to zero.

Again, the version of the model test defined by (33) can be applied to the case of linear

restrictions on the item parameters.

Corollary 2. If the item parameters are subject to linear restrictions of the form
E(m) =HPB , with B an s'-dimensional vector of parameters and H has rank s',
the test statistic R1c defined in Theorem 2 has an asymptotic xz-distribution

with G(K-1) - s’ degrees of freedom.

In the next section the proof of Theorems 1 and 2 and their corollaries will be given.
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4. The derivation of the asymptotic distribution of R’c.

In the present section, Theorem 2 will be proved first. Then it will be sketched what
alterations have to be made to prove Theorem 1. In either proof, the general framework
developed in Glas and Verhelst (1989) will be used. The general framework relates to a
multinomial model with response patterns as categories, so let p be a v-dimensional
vector with elements Py for all xe{x}, where Py is the observed proportion of persons
with response pattern x. Further, let ® be a v-dimensional vector with elements L for
all x e{x}, where L is the probability of observmg response pattern x, defined by (15).
Consider a test statlstic defined by R -d W d where dd N'/ZX(p %) and WdXD X

The matrix of contrasts X is defined by

1
X(1) 0
X= X(g) " (34)
o Xa
e td
where X(g) is defined by
-Xl(g) I(g)+1 "xr xu(g)-
X(g) d o' 1. o: e 0O ‘ (35)
o' (] o ¥ o O
| o 00 .0 .. 1

with Xr a Kxv_matrix with as columns all xe{ x| r(x) =r}. Further, 1 is a vector with
all elements equal to one, and 0 is a vector with all elements equal to zero. The

dimensions of these vectors are equal to the number of columns in the matrices Xr,

r=1(g),...,ulg), above them. In the sequel it will prove convenient to partition X(g) as
[
X(g) = Y ] : (36)
g
d
with Z_ = [x“g)xl(g)ﬂ ¥, xu(g)].
d.-1/2

First A = D_lt dn/oE' must be derived. Let the matrix T‘ be defined as
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0 X' X2 " Xr XK-1 xK
10 o0 ..0 ) 0
ot o 0 o' 0
T* = oo 1 o o' 0 (37)
o0 o 5 0’ 0
oo o ..0 ..t 0
Lo o' o .0 ..0 1

where Xr is a var matrix with as columns all xe{x|r(x)=r}, and x,, is the pattern

with all responses in the highest possible category. 3
Since the model belongs to an exponential familly, it follows from Lemma 1, that
au/c)E‘=D“T'-mt'T', where T is equal to T , with the K-th and last row deleted. The
asymptotic distribution of the test can now be derived by checking conditions 1 and 2.

In the following lemma, T will be partitioned

-

*_1

T-[T]’ (38)
w

such that T_qg [o .X1 , X2 ""’Xr ""'XK—1XK] = [o 'Z1 ,...,Zg ""'ZG Xy ] .



Lemma 2. The columns of A belong to M (DL/ZX') and there exists a vector ¢

such that X'c =1 v
Proof. It will first be proved that the columns of D e &y belong to M (D 2%
by showing that the columns of DVZT belong to this manifold. From

~ ¥ " [~ =
1

/2., _ /2|7t 1/2 ' /2,
Dy Ty =D and M(D/ " ) ¢ M%) .

-xK o - o

it foIIows that the columns of D 2T belong to M (D i X) That the columns

of D T also belong to this mamfold can be verlfled in the following manner.
Consider (35). A vector with all elements equal to one can be constructed from

X('g) as X( )c , with the first K elements of cg equal to the elements of the
K-dimensional vector (1/1(g)) (1,2,....m1 ,...,1,2,....mi,...,1,2,....mk) and the remaining
elements equal to (I(g)-r)/I(g) , for r=1(g)+1,...,.u(g). Applying this procedure to all

.

matrices in X, it can be shown that if ¢'=(1, c" cg G AL Xec=1 .

From the last observation it also follows that the columns of Dﬂ ?'I' belong to
M (DI/ZX) Finally, D'/ZX c= D:t/ziv = 1t1/2. and so 'x'/zl: T belongs to

M(D X'). o
n

A o
Next, it will be shown that the test statistic defined by R1c =dW'd is equivalent with

the statistic defined in Theorem 2.

: g * i ’. = =
Let p( ) (pug),...,pr,...,p u(g)) , wWhere pr has elements px Nx/N, for all xe{x|r(x)=r}.

In the same manner, 'l( ) ( : 'u ), where 'n: has elements n , for all

g™ r ( )"
xe{x|r(x)=r}. Further, D x(g) is the dlagona| matrix of the elements of ‘l( ) . From

the structure of X, it follows that d' W d can also be written as g d' W d
1/2 s g =1 *g *g *g

with W*g (g) n_(g) (g) and d*g =N X(g)(p(g)-'u(g)).
The elements of NY( )( p(g) (g)) are given by [N ~ E(N R4 )] for

(I(@)+1) <r <ulg), and from N LEn and ur—n /N it follows that these elements are all

equal to zero. Therefore, d;g can be given by d’ »g (d( ).o),

: - kji/2 2 ;
with d(g)‘ N Z(g)(p(g) n (g))' Let the matrix W*g be partitioned
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w*gn W*glz o ngn(g)zg Zngt(g) Yg (39)

W W .
#g21 ' %g22 Yo%y YePrig Ve
As a concequence of the fact that dg can be given by d =(d; ,.0),

(g o
g d(g)W(g)d(g) gg (g)[ *git *912 argazwagzt] 1d(g) G
and since W *go2 is a diagonal matrix of the elements v r for r=1(g)+1,...,ulg), it can
be verified that the test statistic defined in the present sect:on is equivalent with the
statistic defined in Theorem 2. The number of degrees of freedom of the test can be
computed by counting the number of deviates on which the test is based, which is equal
to the dimension of “’d;t""'d'*g""’d.#G'1)' that is GK+2+ (K -1 -G), minus the
dimension of §, which is 2K -1, minus one. Thus, the number of degrees of freedom is
equal to (G-1)(K-1). If the item parameters are a linear function of an s'-dimensional
parameter vector B, the number of degrees of freedom is equal to GK+2+ (K-1-G)
minus s', K, and one, so in this case, the resulting number of degrees of freedom is
equal to G(K-1) -s’

Next, the proof of Theorem 1 will be sketched. In this case, K-1 subgroups are made
and, for every subgroup g, g=1,...,G, l{g) =ulg). As a result, the matrix of contrasts

has the form

[ X .
xz
X B X g (41)
0 r
XK-1

L A
If Nr has elements Nx,xe{x lr(x)=r}, XrA{' will have elements Mrij’ for i=t,...,k and
J=1,...m(). In the previous section, however, it was argued that for certain

combinations of i,j and r, Mrij is systematically equal to zero. The rows of Xr associated
with these elements are equal to the zero-vector, and, as a result, X will be of
incomplete rank, which obstructs using the theory sketched in section 3. Therefore, a

matrix X: will be introduced, which can be derived from Xr by removing all rows which
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are associated with a combination of the indices i and j for which r <j or r > K-mf(i) +j.
If Xr has 2 mli) rows, X: will have e_rows. Let the matrix of contrasts X”i be

i
defined by

| .

X1 5

e X,
X = X* 5 (42)
0 r
X*

K-1

L 1

*
Notice that X' and X ' have the same column space, since the latter is derived from

the former by removing zero-vectors. Therefore, proving that the columns of A belong
to M (D'/ZX;:') is equivalent with proving that they belong to M (DII/ZX'), and from the
existence of ¢ such that X*‘c = 1v it follows that X'c = 1, However, the last two

proofs are given in Lemma 2, if G=K-1 is chosen. "
-1
The number of degrees of freedom is computed as follows. Notice that X* has 2+ 2 e
r=1
rows, so the number of deviates on which the testing procedure is based is equal to

K-1
2+ X e - The number of parameters to be estimated is 2K~-1. As a result, the
r=1i K-1
number of degrees of freedom of this version of the R1c testis X er -2K +2.
r=1
In Glas (1989) it was shown that if a statistic of the form defined by (28) has an

asymptotic x_z-distribution for some parameterized multinomial model, the statistic will
also be xz—distrlbuted for models that can be derived by imposing linear restrictions on

the parameters of the more general model. This proves corollaries 1 and 2.

= 28



5. Some generalizations of the estimation procedures.

The present section will be mainly devoted to generalizing the estimation procedures for
the unidimensional Rasch model for polytomous data, or partial credit model, to
incomplete designs and linear restrictions on the parameters. Let the items be indexed
i=1,....,k and the respondents by n=1,...,N. A test administration design consists of T
tests, indexed t=1,...,T, and every test is identified by the pair [{ n}t, {i}t ], where {n}t
is the set of the indices of the persons taking test t, and {i}t is the set of the indices
of the items in test t. It is assumed that for every two tests t and t', {n} tﬂ{ n}t.= 0.

Further, the design vector a;; has elements ay; for i=i,....,k , where a (=1 if item ie{i}t

t

and au=o if this is not the case. First it will be assumed that the tests are linked via

common items, which means that, for every two tests indexed t and t', there exists a

sequence of indices z1.z2 z, such that ataz1> 0 az1a22> 0 az ha > 0. In the sequel

it will be shown that in some instances this assumption may be dropped.

t

Derivation of estimation equations can be done using the fact that, due to experi-
mental independence, the complete log-likelihood function can be written as the sum of
the log-likelihood functions of the tests. Applying this principle to the CML estimation
equations (22), the CML estimation equations in an incomplete design are given by

(M

T K el .
s=z:a,z:t n s ), (43)
jy 2t = tr r

t=1 r=o0 tr

for i=1,...,k and j=1,..m(i), with s the observed number of responses in category j of

i

item i, Kt the maximum score that can be obtained on test t, and n " the number of

t
- is an elementary function of order r,

. - . y (i)
of the parameters & ief |}t and j=1,...,m() , and rt(r-])

\ ie{i}t and j=1,...,m(i), where all parameters

persons obtaining score r on test t. Further, T’

is an elementary function
of order r -j of the parameters sij

associated with item i have been set equal to zero.
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As in the case of a complete design, the item parameters may be subject to

11""’_nij""'_nk(m(k)-1))’ B an
s-dimensional vector of parameters and H a matrix of full column rank. Again, the CML

linear restrictions of the form E(n) =HP, with E(n) = (-y

estimation equations for B are given by H'A(E(n)) =0, where A(E(n)) is the vector of

first-order derivatives of the complete log-likelihood function with respect to E(y).

It may be interesting to notice that if linear restrictions are imposed, the design
needs no longer be necessarily linked. Consider an example of a design with two tests,

where, for t=1 and t=2, E('q)(t) are item parameter vectors which have no elements in

(1) (2),.

common, i.e., §(n) can be written as E(n)'=(E(n) " ,E(n) "')'. So it is assumed that the

tests are not linked. Let

E(“)(t) H" H12 B(1)
= (2)| . (44)

E(n)(z) H21 sz B

Then the estimation equations are given by

wow 1 Tacan™1 To

s = (45)

5 i (2) ,
H‘a H22 A(E(q) 0

with A(E(‘n)(t)) the vector of first order derivatives of the log-likelihood function with

(t)

respect to §(v) L . Since the design is not linked by common items, the two systems

of linear equations, A(E(n]m)=o and A(E(n)(Z)) =0, are independent. If H12=0 and

H21=0, the system (45) is equivalent with the two independent systems H;1A(E(n)('))=o

and Hézb(ttn)(zlho. So, generally speaking, it is a necessary condition for the
existence of a unique solution of (45), that there does not exist a permutation of the
elements of B and an associated permutation of the rows of H, such that matrices H1 2
and Hz: are obtained that are both equal to zero. Derivation of sufficient conditions for
the existence of a solution of the estimation equations for B, however, is beyond the

scope of the present paper, for this topic one is referred to Fischer(1981,1983).
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The present section will be concluded with an example of the possibilities opened
up by combination of an incomplete design and linear restrictions on the parameters.
Suppose N persons are confronted with k' open-ended questions. The responses are
judged by two referees. For i=1,...k', let xni be the judgement of the first, and xn(k'+i)
the judgement of the second referee with respect to the response of person n on item i.

Clearly, X i and X are not independent, for they both depend on the same

'+
response and the gt(a':ivalllion of a likelihood-function is hampered by the fact that the
product-rule cannot be used. To circumvent this problem, the respondents are divided
into two groups. For the first group, only the judgements of the first referee are
included in the analysis and for the second group, only the judgements of the second
referee are considered. This results in the design displayed in Figure 1. The data which
are not included in the study can be used for a cross-validation.

The differences in the judgements of the two referees can now be modeled by imposing

restrictions on the item parameters such as

4] “(k' +m.=nu+t , which is a model without interaction between judges and items
(2) n(k'+i)j ='r||,j+ T which is a model with interaction between judges and items
(3) "(k'+ilj =Tlij+ tj , which is a model with interaction between judges and categories

(4) n(k'+i)j =y.+1t,, which is a model with interaction between judges and combinations

ijoi’
of items and categories.
The models (1), (2) and (3) can be estimated both by CML and MML estimation
procedures. For the MML estimation and testing procedure one is referred to Glas and
Verhelst (1989). Using Fischer (1983, Theorem 3, p.16), it can be easily verified that model
(4) is not identified in a CML framework. In an MML framework, model (4) is a

reparametrization of the Rasch

judgements of judgements of
referee 1 referee 2

included ‘ not included

persons

| o]

Figure 1. Data collection design for studying interjudge reliability.
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model rather than a restricted version. Further, in an MML framework, the referee
effects in case (1) could also be modeled by the population parameters, introducing
u=u as the mean of the ability distribution of the first group and W= u-T as the
mean of the ability distribution of the second group.

This strategy for analyzing referee effects can, of course, be generalized in various
ways. One may, for instance, think of a design with more than two judges, or of
interaction effects between judges and subgroups of respondents. With respect to this
last example, one may, for instance, think of interaction effects between sex or race of
the referee and the respondent. These generalizations will, however, not be worked out

in detail in the present paper.
6. Some generalizations of the testing procedure.

To be able to use the theory for the construction of test statistics sketched in

Section 3, the model for incomplete designs have to be brought within the framework of
the multinomial model. For the conditional model defined by (14), this is accomplished by
introducing the assumption that, if N - is the number of persons obtaining a sum

score r, Ntr for t=1,...,T and r=o.....Kt has a multinomial distribution characterized by

N and the probabilities v, , t=1,...,T and r=0,...K v The probability of a response pattern

tr
on test t can now be given by

d %i
L utr.n Hsuj/rtr ' (46)
|e{x}tj

k
Let K be defined Kg( 2 m.). The number of parameters to be estimated is the sum

i=1 1!
of K-1 item parameters and (§Kt)+T-1 parameters assoclated with the distribution of

Ntr' that is, ( %Kt)+T+ K - 2 parameters have to be estimated. This will be used for

computing the degrees of freedom of the test statistics.

With the model brought within the framework of parameterized multinomial
models, the method for constructing model tests sketched in section 3 can be applied.
The generalization of the Rm test to incomplete designs is accomplished by construc-

ting a matrix of contrasts X, which has the form
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¥ = X ) (47)

where Xt is the usual matrix for testing a certain contrast in the case of one test.
As a consequece of the structure of this super-matrix, the complete model test will be
a sum of the statistics of the separate subgroups in the design. Thus, the R - statistic

is generalized

T
d 5 g, (48)
1c 1c
t=1
(t)
ic s
contrasts, the proof that the statistic defined above has an asymptotic x -distribution

with R~ the statistic for the separate groups. Given the structure of the matrix of

is easily derived from the analogous proof for a complete design.

The number of degrees of freedom is computed as follows. First assume that
no linear restrictions are imposed. Let the statistic be computed using Gt subgroups in
test t. For every test t, the number of deviates is equal to 2+Gth + (Kt- 1) —Gt, so the
total number of deviates is T + Zt Gt(Kt -1) + Zt Kt' Subtracting one plus the number
of parameters to be estimated, which is (Zt Kt) +T+K-1, results in
Zt Gt(Kt— 1) - (K-1) degrees of freedom. In the same manner it can also be derived
that the number of degrees of freedom is Zth (Kt-i) -¢', if s' linear functions of the

item parameters are estimated.
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7. Some examples.

A dichotomous item is defined to be biased if, for a given level of ability, the probability
of a correct response differs over groups (Mellenbergh, 1982,1983). So though items may
differ in difficulty and groups may differ in their ability to solve the item, but that does
not define item bias. An item is only considered biased when it differs in difficulty
between subjects of identical ability. The generalization to polytomous items is straight-
forward. A polytomous item can be considered biased if the set of probabilities of
scoring in the various categories of an item, for a given ability level, differs between
groups. Several techniques for detecting item bias have been proposed, all based on
evaluating the differences response probabilities between groups conditional on some
measure of ability. The most generally used technique is based on the Mantel-Haenszel
statistic (Holland and Thayer, 1988), others are based on loglinear models (Kok,
Mellenbergh and van der Flier, 1985) or on IRT models (Hambleton and Rogers, 1989).
The advocates of the Mantel-Haenszel and loglinear approach evaluate item difficulty
conditional on sum scores. It is well-known that adopting the sum score as a sufficient
statistic for ability is equivalent with adopting the Rasch model (Fischer, 1984). The
adherents of these approaches do not subscribe to this implication and do not actually
use the Rasch model. Application of IRT to the problem of detecting item bias, on the
other hand, suffers from the poor mathematical foundation of test statistics. An
exception is the technique proposed by Kelderman (1989), which is based on a so-called
loglinear IRT model. One of the drawbacks of this approach is that it is difficult to use
on larger tests. Therefore the present author will suggest an alternative approach based
on the theory presented above. Combination of the method presented here and
Kelderman's techniques remains a topic of further study. Two examples will be given,
the first pertains to dichotomous items, the second to polytomous items.

The first example is the 1930 examination in reading comprehension in English for
the Dutch lower general secundary education, the MAVO-D level. The technique has also
been applied to similar examinations of French and German, and to other educational
levels (MAVO-C, HAVO and VWO), all with results analogous to the results presented.
The analyses were carried out using a sample of 1000 boys and 1000 girls from the
complete examination population. The examination was made up of 50 dichotomously

scored multiple choice items. The objective of the procedure is to detect items for which
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the probability of eliciting a correct response is higher or lower than predicted from the
estimated ability level, that is the score level, of either the boys or the girls. Essentially

the procedure consists of two stages: (1) identifying Rasch-homogeneous subscales, and
(2) evaluating the differences in response probabilities between boys and girls in homo-

geneous ability groups.

In order not to let item bias interfere with searching for Rasch-homogeneous
subscales, only the data of one of the two groups is used at first. In the present case
the choice of a group is completely arbitrary, and the girls were chosen. In other
instances one may start with a so-called reference group, and examine the responses
of the so-called focal group in the second stage of the procedure.

Starting with the complete examination, item parameters were estimated and the R1
statistic was computed. Next, items with the largest fit indices were removed and the
process was repeated until the R1 statistic was no longer significant. In the same
manner the next Rasch scale was identified by repeating the process using the removed
items. Three subscales of 21, 14 and 12 items, respectively, were identified, three items
could not be categorized. In Table 1 the evaluation of model fit for the largest subscale

is summarized.

The total sample of female examinees was divided into six score groups of approximately
the same number of respondents. In the rows of Table 1 the scaled deviates of the
items are given. If no parameters had to be estimated these would be standard normal
deviates. Squaring and summing scaled deviates over subgroups results in an index of
item fit. Again if no parameters had to be estimated, the index would be chi-square
distributed with six degrees of freedom. Of course, the assumption does not hold, but
the fit indices serve their purpose in identifying the relative contribution of items to the
R1 statistic. The value of the R1 statistic is given at the bottom of the table, together
with its degrees of freedom and its probability.



Next, the fit of the subscale was evaluated using the boys' data. The results are
given in Table 2. Inspecting the value of the R1 statistic at the bottom of the table
reveals that the items fit a Rasch-scale, yet the fit is less perfect than with the girls.
Especially item 12 seems to fit poorly, since it has a fit index of 19.1828 while the 5%
critical value of a chi-square variable with six degrees of freedom is 12.6. This item may
be subject to bias, but nothing conclusive can be said, since both groups are not yet on
one scale. So next the item parameters were estimated using both boys and girls. The
results of the evaluation of model fit are shown in Table 3. It can be seen that the

mode! does

not fit for boys and girls together. Candidates for bias are item 21, which has a fit index
of 12.3204 for girls and 13.9846 for boys, and item 50, with fit indices of 11.9820 and 23.1616
for girls and boys, respectively. Inspection of the scaled deviates of item 21 shows that
they are positive for girls and negative for boys. Since the scaled deviates are based

on the difference of observed and expected frequencies, it can be concluded that the
item favours the girls. In can be verified that this also holds for item 50. Item 12 is a
different matter. It fits well for girls, but it does not fit for the boys. Inspection of the
scaled deviates shows that the item discriminates too little for the second group. Using
the terminology of Mellenbergh (1982,1983) items 21 and 50 show uniform bias, while item
12 is non-uniformly biased. However, the presence of biased items may still detract from
the value of the sum score as a sufficient statistic for ability. Therefore in the next
analysis the items 21 and 50 were considered to be different for boys and girls. For
practical purposes, for the boys item 21 was labeled 121 and item 50 was labeled 150. In
the parameter estimation item 21 and 121 and item 50 and 150 were treated as different

items. In Table 4 the resulting
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evaluation of model fit is shown. It can be seen that the items 21, 121, 50 and 150 show
a good fit. Further, the R1 statistic drops from 299.1520 in the previous analysis to
250.9180, which is considerable given a drop of two degrees of freedom. However, global
model fit is still not perfect. To investigate whether this could be contributed to item 12,
several analyses were run. Splitting item 12 into different items for boys and girls
resulted in an R1 value of 245.3231 with 217 degrees of freedom, which still is poor.
Removing the item from the boys' subscale did help (R‘ = 243.159, df =212), but good fit -
was only achieved when the item was completely removed (R1 =240.734, df =207).
Summing up, evidence has been produced that items 21 and 50 are uniformly biased in
favour of the girls, while item 12 is non-uniformly biased and discriminates too little for
the boys. The second example concerns an examination in language comprehension of
Dutch, which consisted of 20 polytomous items with 4 to 6 score points each. The
procedure for detecting item bias is exactly the same as for dichotomous items, that is,
first a number of Rasch- homogeneous subscales are identified using a procedure based
on the R1—statistic. then the differences in response probabilities between the two
groups are evaluated for matched ability levels. Therefore the procedure will not be
reiterated in detail, only the effects of the higher level of complexity of the data
structure will be illustrated by showing some tables of counts on which the procedure
is based. In Table 5 observed and expected frequencies for four items with four
response categories are shown for the group of girls with scores from one to four.
Notice that every item yields a distinct scaled deviate for every response category.
The results of this score group and other score groups are summarized in Table 6.
Again, for every item/category combination an index of fit is computed by squaring and
summing the scaled deviates over subgroups. An index of item fit can be computed by
summing the item/category indices over categories. At the bottom of the table it can
be seen that the items make up a Rasch-scale. The scale was found by a process of
elimination similar as the one described for dichotomous items. Introducing the boys
resulted in R1=237.683 with 177 degrees of freedom, so the scale did not fit both groups
together. Splitting one of the items resulted in a significant improvement ( R1 = 173.149
with 161 degrees of freedom).

The point to be made from inspection of the tables is that interpreting item bias

becomes rather complicated for polytomous items. The response categories of the
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items are associated with different numbers of score points to be acquired. If an item
favours one of the two groups, for this group some higher indexed categories will attract
more responses that expected, while some lower indexed categories, but not necessarily
the zero category, will attract fewer responses than expected. Especially if the number
of response categories is large, detecting which group is favoured by the item may be
complicated. So while searching for Rasch-homogeneous subscales can be carried out in
much the same mechanical manner as for dichotomous items and biased items can be
pinpointed in a statistically sound fashion, the interpretation of the results may, in most

instances, be a tedious job.
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TABLE 1: EVALUATION OF MODEL FIT FOR THE GIRLS

OVERVIEW OF ITEM FIT

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 9539 -.4894 -.5201 . 5075 -.7086 -.2740 2.2546
2 .4536 -1.1639 .5201 -.2266 = 398 1.0431 3.0997
12 2.4841 -.6653 .8950 .0609 ~ 6228 = ,8711 8.7490
15 .0093  -1.6490 -.3877 -.4332 1.7119 1.1783 7.2063
16 -1.7211 .0470 .6594 .7867 1.1162 .5821 5.6029
17 1.8075 -1.0339 -1.0674 .6589 .1703 -.6168 6.3188
19 .4132 «, 7691 .5828 .0394 3213 -.5801 1.5433
20 .2086 1.1698 -1.1354 -, 0129 -.7168 .5668 3,5363
21 -.5188 .1046 -.4980 .5179 -.1273 1.2831 2.4588
22 -.5436 -1.2984 .3382 .4549 . 9581 .7790 3.8274
23 -1.6872 .6186 1.1860 .5612 -.2028 -.3745 09,1322
24 .2516 .8687 .0289  -2,8093 .6866 .7670 9.7708
25 ~ 3618 -.0812 1.3287 -.6914 -.9440 .7985 3.9098
31 -.7423 1.2181 ~ 95695 -.2051 0913 .1544 2.4276
33 -.8157 1.2858 -.0234 -.0003 ~.2389 -.4710 2.5982
35 .6263 .6051 -.1067 -.8476 - 3516 =, 3153 1.7113
38 = 3653 1.1492 o123 .9173 -1.3554 =, 6291 4.6260
44 1139 ~sd 721 1.0760 - 2791 1.6335 -1.6881 7.6204
45 -.6578 -.2516 -.8836 1.5314 .9845 .1138 4.6043
46 .9270 -.1541 -1.1481 .4572 -.3744 .4308 2.7358
S0 - 1925 =, 1120 .6091 .5568 -.0843 -.8846 1.,5202

OUTCOME OF THE R1-TEST: 86.6060
DF: 100
PROB(R1): .8278




TABLE 2: EVALUATION OF MODEL FIT FOR THE BOYS

OVERVIEW OF ITEM FIT

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 L9311 1.1718  -1.0582 -.6757  -1.4345 -.4748 6.0999

2 1.2253 = 2163 -.6966 .5540  -1.5503 -.6434 5.1577
12 3.3095 1.5571 -.4026 -.1881 -1.1810 -2.0527 19.1828
15 -.1473 -.0531 -.0994 -, 5097 .7785 5112 1.1616
16 -1.6850 -.0819 .6855 1.1445 «6832 1.1711 6.4638
17 -.2890 > o729 .6726 -.7774 .4646 <5265 1.7724
19 -.3042 -.3734 - 8122 .9707 -.1183 . 9669 2,2205
20 -.1854 1.0966 .5024  -1.3662 «odil  =1,18635 4,9776
21 -.4848 .0531 -.4130 .8175 .0751 1.0185 2,1197
22 -1.4908 -.9060 .7035 .5459 1.4769 A 302 6.5579
23 -.4798  -1.4734 -.0343 .6455 2.6518 .0430 9.8528
24 1.8194 .0015 .8486 - 6829 -1.9582 -.1241 8.3468
25 ~ A T8 .1847 -.7220 1.6328 1192 1.1711 5.1369
31 -.0640 -1.0764 .0130 .4010 .8520 .9589 2.9690
33 «1..2530 -.5896 1.0272 1.4216 -.0815 =,3189 5.0145
35 .0019 -.2783 ~ ;2291 -.2349 .6912 1.4809 3.0832
38 .9405 .8079  -1.0827 « P22 «.6131 ~ . 5897 3.9259
44 - 9390 .0741 1.3067 -1.4776 1.3753 -.4002 6.8298
45 «1 37215 . 5779 .7500 * ol 306 <. 2765 1.0438 3.9819
46 w2711 17 -.2117  -1.3302 -.4100 1.3701 4.2933
50 1.8432 -.0435 -1.3524 9167 -.6828 -1.4142 79617

OUTCOME OF THE R1-TEST: 111.,1115
DF: 100
PROB(R1): .2104




TABLE 3: EVALUATION OF MODEL FIT FOR THE GIRLS AND BOYS TOGETHER

OVERVIEW OF ITEM FIT FOR GIRLS ( CONTRIBUTION TO R1: 130.074 )

Item Group-l Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 1.7244 .3207 <1783 9576 -.1286 .1874 4.0752

2 8133 -.7182 7774 .0316 -.0930 1.1501 3.1141
12 2.1308 -.9490 .6203 -.1644 -.8566  -1.1895 8.0014
15 -1.2440 -2.9167 -1.4367 -.9622 1.0290 .5885  14.4497
16 -1.2700 .4569 . 9806 1.0300 1.3350 .7978 6.2628
17 1.2749 -1.4665 -1.4028 .4417 -.0326 -.7850 6.5562
19 -.3156  -1.45%8 .0209 -.4118 -.1045 -.9599 3.3330
20 -.3079 .5784 -1.6701 -.4891 -1.2380 .0809 4,9970
21 1.3815 1.7066 .9310 1.4762 .9266 1.8960 12.3204
22 -.3143 -.9100 .7080 .7756 1.2837 1.0846 4,8541
23 =1.3103 1.1072 1.6308 .9524 w2369 .0413 6.5671
24 .4815 1.3067 <0285 -2.2975 1.2638 1.3755 10.9859
25 -1.5182 -.9875 .7269  -1.2925 -1.5366 .4485 8.0415
31 -1.1738 .9086 -.8103 “.3729 -.0887 .0590 3.0104
33 -1.4433 .8154 -.4086 -.2876 -.5082 -.6887 3.7303
35 .2778 «3773 -~ 2622 -+ 90539 -.4288 -.3557 1.5086
38 -1.0188 .3880 =, 3912 .3180  -2.0240  -1.2460 7.0918
44 .7009 -.1445 1.4858 “, 1377 1.8853 -1.1954 7.7218
45 -.3103 .1705 -.4704 1,7818 1.2614 <3999 5.2724
46 1.0910 .1695 -.7843 .7681 -.0107 .7615 3.0041
50 1.6891 1.5451 1.8556 1.5211 .9745 .1878  11.9820

OVERVIEW OF ITEM FIT FOR BOYS ( CONTRIBUTION TO R1: 169.078 )

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 .1429 .4578 -1.9754 -1.2312 -2.0260 -.8142 10.4154
2 .8910 -.6139 -1.1262 .3809  -1.8827 -,8319 6.8206
12 3.6536 1.8760 =.0693 0365 -.9999 -1.,8763 21.3167
15 1.2141 1.2560 1.1722 .2649 1.3425 .8752 7.0639
16 -2.1641 -. 95236 .2778 .9465 .4875 1.0918 7.3602
17 .2304 .0789 1.0501 -.5472 .6255 .6193 2.2364
19 .4329 3637 .4137 1.3528 .2438 1.1572 3.7193
20 .3286 1.7228 1.2150 -.8687 .9642 = 8032 6.8816
21 -2.2642 -1.6819 -2.2264 =.0793 -.8335 .6093  13.9846
22 -1.7728 ~1.310% .2373 .2375 1.2247 .5497 6.7750
23 -.8958 -~2.0297 -.6485 .2720 2.4106 -.2140 11.2735
24 1.5139 -.4505 1777 -1.2308  -2.5866 -.5827 11.0716
25 .4883 1.1351 .2262 1.9511 .5202 1.3125 7.3780
31 3383 =« 7239 .3048 .5454 9579 1.0146 2.9757
33 -.6315 -.0432 1.4764 1.6382 =1391 .0211 5.2838
35 .3123 -.0311 -.3319 -.1432 .749S8 1.5039 3.0533
38 1.6746 1.6249 =,1583 1.2835 -.0403 *,1853 7 .4531
44 -1.5946 -+ 9355 7876 <1,8713 1.1673 - 8572 9.1303
45 -1.7687 .1566 .3040 -.5043 -.5634 9167 4,6574
46 .3514 -.0138 -.6677  -1.6840 -.7343 1.1973 5.3781
50 2313 -1.8116 =3.,33897 -.4491 -1.7507 -2.3252 23.1616

OUTCOME OF THE R1-TEST: 299.1520
DF: 220
PROB(R1): .0003




TABLE 4: EVALUATION OF MODEL FIT FOR THE GIRLS AND BOYS TOGETHER

OVERVIEW OF ITEM FIT FOR GIRLS ( CONTRIBUTION TO R1: 108.259 )

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 1.8640 .4024 .2268 . 9867 -.0987 .2055 4.7137

2 .9140 -.6567 .8047 .0536 -.0747 1.1559 3.2585
12 2.3124 -.8057 .7565 -.0540 -.7431 -1.0827 8.2961
15 -1.0273  -2.7513  -1.3225 -.8836 1.0842 6272  12.7232
16 -1.0947 .5389 1.0284 1.0593 1.3562 .8132 6.1691
17 1.4874  -1.3134  -1.2937 .5076 .0245 -.7424 6.4206
19 -.1007 -1,2921 .1403 -.3254 -.0320 -.9052 2.6256
20 -.1369 .7462  -1.5334 -.3781 -1.1287 .1670 4.3715
21 -.5665 .1081 -.4818 5338 -.1036 1.2999 25502
22 -.0976 -.7524 .8125 .8462 1.3395 1.1223 5.0058
23 -1.0935 1.2486 1.7237 1.0173 .2944 .0810 6.8540
24 .6721 1.4807 .6687  -2,1862 1.3617 1.4483 11.8228
25 -1.3243 -.8765 .7879  -1,2387 -1.4910 .4700 7.1211
31 -.9574 1.0581 -.6969 -.2954 =, 0250 .1020 2.6202
33 -1.2268 9526 =, 3078 -.2188 -.4497 -.6477 3:1768
99 .4950 .5304 -.1508 -.8722 -.3624 -.3100 1.5373
38 -.8390 . 5599 - ;2218 4241 -1,9193 -1.1662 6.3045
44 .8582 =, 0339 1.5312 -.0984 1.9041 =1.1690 8.0857
45 =~.4116 . 2869 -.3882 1.8220 1.2965 .4264 5.4280
46 1.3101 «3331 - .6607 .8493 .0613 .8084 3.6426
50 - 2397 -.1084 .6228 .5727 -.0606 -.8527 1.5158

OVERVIEW OF ITEM FIT FOR BOYS ( CONTRIBUTION TO R1: 142.659 )

Item Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

1 -.0065 3647  -2,0668 -1.2743 -2.0648 -.8325 10.9853
2 .79%4 -.6869 -1.18%51 .3629  -1.9126 -.845% 7.0205
12 3.4685 1.7074 -.2384 -.0726  -1,0633 -1.9552 19.9615
12 1.0119 1.0971 1.0471 «2025 1.3028 .8534 5.7906
16 -2.3426 - 6297 2073 .9207 4663 1.0850 8.1696
17 .0290 -.0806 .9314 -.6115 .5844 .5979 1.9478
19 w2295 .1871 .2662 1.2865 .1885 1.1318 31300
20 .1631 1.5419 1.0371 - 59 .8776 -.8630 5.9470
121 -.4476 .0555 -.4294 .8026 .0560 1.0075 2.0500
22 -1.9776  -1.4857 .1026 .1730 1.1828 .5252 7.8333
23 -1.1002  -2.2048 -.7826 2117 2.3796 -.2411  12.4493
24 13273 -.6273 .0011  -1.3355 -2.6811 ~.6356 11.5313
25 3219 1.0305 .1419 1.9269 .4946 1.3043 6.8445
31 .1345 -.8964 .1700 .4827 .9139 . 9926 2.9041
33 -.8344 -.2011 1.3634 1.5908 .0959 -.0032 $.1355
ab .1084 -.2011 -.4722 ~wdld S .7041 1.4843 3.0186
38 1.4832 1.4398 -.3342 1.1895 <.1208 = 2339 5.8689
44 =1 . 7682 -.6446 7196  =2.,0221 1.1501 -.6752 9.9313
45 -1.9674 .0249 .2062 -.5549 -.6019 .9031 5.3996
46 .1484 -.1920 -.8219  -1.7692 -.7959 1.1718 5.8713
150 1.8787 -.0409 -1.3700 .5009 -.7048  -1.43683 8.2205

OUTCOME OF THE R1-TEST: 250.9180
DF: 218
PROB(R1): .0624




TABLE 5: OBSERVED AND EXPECTED FREQUENCIES FOR GIRLS

WITH SCORES FROM 1 TO 4 (N=106)
ITEM CAT OBSERVED EXPECTED DEVIATE SCALED DEVIATE
5 1 58 62.798 -4.,798 -.801
2 103 101.106 1.894 271
3 37 40.616 -3.616 -.684
4 23 16.906 6.094 1.617
6 1 3 4,904 -1.904 -.869
2 15 18.946 -3.946 -.953
3 1 877 « 323 .394
4 4 2.152 1.848 1.273
8 1 4 4.061 -.061 -«031
2 11 9.954 1.046 .340
3 0 1.141 -1.141 -1.072
4 4 3.315 .685 .382
16 1 31 32.329 -1.329 ~.250
2 70 80.004 -10.004 -1.417
3 12 8.601 3.399 1.191
4 0 .324 -.324 -.9570

Contribution to Rl-statistic : 12.462



TABLE 6: EVALUATION OF MODEL FIT FOR THE GIRLS

OVERVIEW OF ITEM FIT

Item Cat Group-1 Group-2 Group-3 Group-4 Group-5 Group-6 Item Fit

S 1 -.8012 1.1094 -.3857 1.3026 .3918 <1.8118 7.1545
2 2711 -1.5841 -.7690 -1.5828 1.0782 1.0824 8.0136

3 -.6836 .0620 .3207 .9624 - .,8654 .3387 2.3638

4 1.6167 +2311 .3062 -1.1487 -.3414 -,2196 4,2453

6 1 -.8686 -.7641 .6655 -1.8085 11,9890 .3840 9.1556
2 =, 8581 .0652 .8538 -.4862 -1.0679 1.3126 4.7414

3 3935 -,3295 -1.3894 -1.7324 1.7838 »121% 8.4134

4 1.2732 1.1416 .4233 1.8760 -1.2270 -.7171 8.6425

8 1 -.0305 .0704 1.6339 -.3781 -.8889 -.1944 3.6464
2 .3402 .5850 -.5103 -.8060 1.0640 -.7357 3.0412

3  -1.0720 .4062 .9397 -1.8793 -.0891 9194 6.5821

4 .3822 -.9178 3895 1.0137 .3428 -1.0993 3.4936

16 1 = w2005 .2576  2.1679 -.,1985 -1.0951 .0076 6.0676
2 -1.4170 .9864  -,1917  -.4398 .7858 .1700 3.8576

3 1.1910 -1.4205 -2.4318 -.6313 .5917 1.2228 11.5938

4 =.,57203 1.0713 .2228 -,3024 .7482  -.5754 2.5050

OUTCOME OF THE R1-TEST: 88.5175
DF: 81
PROB(R1): .2744
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