
l. 4 
91-4 

Measurement and Research Department Reports 91-4 

A Dynamic Generalization Of The 
Rasch Model 

N.D. Verhelst 
C.A.W. Glas 

Cito 





Measurement and Research Department Reports 

A Dynamic Generalization Of The Rasch Model 

N.D. verhelst 

C.A.W. Glas 

91-4 

3.4 
91-4 

95 

C'S1a I nstituut voor Toetsontwikkeling 

Bibtiotheek 

Cito 

Arnhem, 1991 

··--· .. --·-· ··- ·--· -· ···-· ........... _,.,_ 

8501 016 1913 

I llll II Ill II Ill II Ill II Ill II Ill ll Ill II Ill I llll 



4:1 Cito Arnhem 
All rights reserved 



Abstract 

By combining the common Rasch model with the concept of incomplete designs, the 

former can be made suited as a dynamic model: items in a test are considered to 

consists of a collection of conceptual items, one of which is presented to the 

testee dependent on his preceding responses and/or the feedback (s)he got. rt 

is shown that marginal maximum likelihood (MML) is suited as an estimation 

procedure, and the conditions are specified where conditional maximum 

likelihood estimates (CML) may be obtained. A hierarchic family of dynamic 

models is presented, and it is shown how to test special cases against more 

general ones. Furthermore, it is shown that the model presented here is a 

generalization of a class of mathematical learning models, known as Luce's 

beta-model. 

Key words: Rasch model, missing data, incomplete designs, dynamic models, 

mathematical learning theory. 





Introduction 

Perhaps the most outstanding feature of IRT models is the fact that 

interindividual differences in behaviour are explained at the model level, 

implying that subjects need not be considered as statistical replicates of each 

other nor that it is necessary to sample multiple observations from the same 

subject under assumedly constant conditions. The way this is accomplished is by 

introducing so-called incidental parameters, one parameter associated with each 

individual. Although these parameters can be treated formally as any other 

parameter in the model, a major problem is associated with their presence in 

parameter estimation. Maximizing the likelihood for example will in general not 

yield consistent estimates of the incidental parameters and of the other 

(sometimes called structural) parameters of the model (Neyman & Scott, 1948). 

There are several ways to cope with this problem. Two estimation methods are 

rather popular in IRT. In the first method, the sufficient statistics for the 

incidental parameters (if they exist) are considered as constant, and the 

conditional likelihood, given these statistics, is maximized. This conditional 

likelihood is by definition independent of the incidental parameters and 

Andersen (1973) proved that this method yields consistent estimates of the 

structural parameters. This method is commonly labelled as Conditional Maximum 

Likelihood (CML). In the other approach the incidental parameters are no longer 

considered as fixed constants, but are treated as realizations of a (non

observed or latent) random variable, whose distribution is assumed to belong to 

a certain family of distributions. In many applications this family is 

parametrized by a finite number of parameters (for example the family of normal 

distributions). Since the latent variable is not observed, it is integrated out 

from the likelihood function, yielding the so called Marginal Likelihood 

function. This function is maximized with respect to the structural model 

parameters and the parameters of the distribution jointly, yielding the 

Marginal Maximum Likelihood (MML) estimates, which by a seminal paper of Kiefer 

& wolfowitz (1956) are proved to be consistent under very mild regularity 

conditions. The use of CML is restricted to models which have minimal 

sufficient statistics for the incidental parameters, and among the IRT models 

commonly applied very few are in this class. (See Verhelst & Eggen (1989) for a 

general characterization.) The most famous example is the Rasch model, and both 

estimation methods have been successfully applied to this model. (For CML, see 

Rasch (1960) and Fischer (1974), for MML, Thissen (1982) and Glas (1989).) 
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Several authors (Fischer, 1981, Mislevy, 1984) have pointed at the fact 

that it is possible to obtain consistent estimates of the structural parameters 

in the Rasch model, from partially incomplete data, or data collected in an 

incomplete design. It is the purpose of the present paper to investigate the 

applicability of the Rasch model in a dynamic context by manipulating the 

missing data concept on a set of seemingly complete data. This manipulation is 

convenient to get around the restrictions implied by the central axiom of local 

stochastic independence common to most latent trait models. For one thing, this 

axiom implies that a correct response by a given subject is independent of his 

responses on previous items or trials, thus seemingly excluding the so-called 

subject controlled learning models where the probability of a correct answer 

depends explicitly on the response pattern given thus far (Sternberg, 1963). 

Although there exist generalizations of the Rasch model, where this dependence 

can be explicitly modeled (Kelderman, 1984; Jannarone, 1986), parameter 

estimation is difficult in these models, and is restricted to cases with a 

rather restricted number of parameters. The approach used in the present paper 

combines the Rasch model with the missing data concept and with linear 

restrictions on the parameter space, yielding a wide range of dynamic models 

which coincide with the Rasch model as originally defined. The basic approach 

consists in conceiving an item (or trial in a learning experiment) as a 

collection of 'conceptual' or 'technical' items , one of which is supposed to 

be administered to each subject, depending, for example, on the pattern of 

previous responses. This is possible because of the basic symmetry in the Rasch 

model, where a change in the latent ability can be equally well be conceived as 

a complementary change in the item difficulty. The details of this approach are 

the subject matter of the next section. 

The idea presented here is not new in fact it has been considered by 

Fischer (1972, 1983). working in the context of conditional maximum likelihood 

estimation, Fischer rejected this approach because the model thus constructed 

was not estimable. In the section 'estimation', it will be shown that the 

models constructed are in general estimable under MML, and that for some 

special subclass CML applies. A separate short section is devoted to 

statistical tests of special cases of the model against more general ones. 

Finally it will be shown that a class of mathematical learning models, known as 

Luce's beta model and generalizations thereof, are a special case of our model. 
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The Dynamic Rasch Model 

In mathematical learning theory (see Sternberg (1963) for a general 

introduction) the control of change in the behaviour is attributed generally to 

two classes of events: one is the behaviour of the responding subject itself, 

the other comprises all events which occur independently of the subject's 

behaviour, but which are assumed to change that behaviour. Models which only 

allow for the former class are called 'subject controlled', if only external 

control is allowed, the model is 'experimenter controlled', and models were 

both kinds of control are allowed are labelled 'mixed models'. As an example of 

'experimenter control' assume that during test taking, the correct answer is 

given to the respondent after each item response. If it is assumed that 

learning takes place under the influence of the feedback (generally referred to 

as reinforcement) independent of the correctness of the given response, the 

model is experimenter controlled; if it is assumed, however, that learning 

takes place only if the subject gave a wrong answer, the model is mixed. In the 

sequel it will be assumed that all controlling events can be binary coded, that 

the subject control can be modeled through the correctness of his responses on 

past items, and that experimenter control expresses itself at the level of the 

item. Let X = (X1, .. ,x
i
,••,X

k) be the vector of response variables, taking 

values 1 for a correct answer and zero otherwise, and let z = (Z1, .• ,z
i
,••,Zk) 

be the binary vector representing the reinforcement event occurring after the 

response has been given. The value zi takes is assumed to be independent of x. 

The prototype of a situation where this independence is realized is the so 

called prediction experiment where the subject has to predict a sequence of 

independent Bernouilli events, indexed by a constant parameter rr. (for example 

the prediction of the outcome of coin tosses with a biased coin). The outcome 

itself is independent of the prediction and it is observed frequently that in 

the long run the relative frequency of predicting each outcome matches 

approximately the objective probability of the outcomes (Estes, 1972). It can 

be assumed therefore that the outcome itself acts as a reinforcer and is the 

main determinant of the change in the behaviour. Notice, that in the example 

given, zi is a random variable which is independent of x. Therefore any model 

which assumes control over the responses only through the outcomes is 

experimenter controlled. 

Define the partial response vector xi (i>l) as 

xi = (X1, •• ,xi-1> (la) 

and the partial reinforcement vector zi (i>l) as 
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z i = (Z1, •• ,z
i

-1>. (lb) 

The model that will be considered is in its most general form given by 

( 2) 

where xi and zi represent realizations of xi and zi respectively, and f
i

(.) and 

g
i

(.) are arbitrary real-valued functions. since the domain of these functions 

is discrete and finite, the possible function values can be conceived of as 

parameters. rt is clear that the general model is not identified, because the 

number of parameters outgrows by far the number of possible response patterns. 

so some suitable restrictions will have to be imposed. 

A general restriction, which has frequently been applied in mathematical 

learning theory is to require that the functions fi and/or gi are symmetric in 

their arguments, yielding models with commutative operators. Since the 

arguments are binary vectors, symmetry implies that the domain of the function 

can be restricted to the sum of the elements in the vectors xi and zi 

respectively. Defining the variables Ri and S
i 

as 

{J:x
j
, 

R - J
=

l i -
0, 

and 

= { 
tizj I 

S1 

0, 

(i>l), 

(i=l), 

(i>l), 

( i =1) , 

with realizations ri and s
i 

respectively, and assuming symmetry of the 

functions g
i 

and f
i
, (2) reduces to 

where �
i

(O) and 1
i

(O) are defined to be zero for all i. If all � and 1 are 

(3a) 

(3b) 

( 4) 

equal zero, no transfer takes place, and (4) reduces to the common Rasch model; 

if all �•s are zero, and at least one of the 1's is not, the resulting model is 

experimenter controlled, if all 1's are zero and at least one of the �•s is 

not, the model is subject controlled, and in the other cases a mixed model 
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results. Notice that (4) implies that no forgetting occurs: the influence of an 

equal number of correct responses and/or an equal number of positive 

reinforcements has the same influence on the behaviour, immaterial of their 

temporal distance to the actual response. This somewhat unrealistic assumption 

is the price to be paid for the elegant mathematical implications of 

commutative operators. In the sequel however, a model will be discussed where 

this symmetry is at least partially abandoned. 

In order to see how (1) fits in the ordinary Rasch model using the concept 

of incomplete data, only the subject controlled subcase of (4) will be 

considered in detail, i. e. it will be assumed that all 7's are identical zero. 

Notice that it is assumed that the transfer that takes place does not depend on 

the initial ability� of the respondent, and that any change in the ability 

(the increment �1 (r1) )  can be translated in a change in the difficulty of the 

items. so the difficulty of an item is conceived of as composed of an 

'intrinsic' parameter 61 and a dynamic component �1 (r1) .  The latter is not 

constant, but depends on the rank number of the item in the sequence (hence the 

subscripted r) , as well as on the specific capability of the item to induce 

learning effects (hence the subscripted�) . These two effects can in principle 

be disentangled by experimental design, but in order not to overcomplicate the 

model, it will be assumed that the order of presentation is the same for all 

subjects. 

Let a 'real' item i be associated with a collection of 'conceptual' items, 

denoted by the ordered pair (i, j) , j=O, . .  , i-1. The conceptual item is presented 

to and responded by all subjects who gave exactly j correct responses to the i-

1 preceding •real' items. Associated with response pattern x is a design vector 

D (X) , with elements D (X) ij• (i=l, .. , k; j=O, . .  i-1) defined by 

{ 
1 if R1 =j 

D (X) ij = 
0 otherwise. 

Response pattern X is transformed into a response pattern Y(X) with elements 

Y (X) ij (i=l, .. , k; j=O, .. , i-1) using 

y (X) ij 

1 if D (X) ij = 1 and X
1 

= 1, 

o if D (X) ij = 1 and xi = o, 

c if D (X) ij = 0, 

5 
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where c is an arbitrary constant. Table 1 displays the set of possible response 

patterns X and the associated vectors Y (X) for k=3. (The constant c is replaced 

by a star .) 

TABLE 1 

The transformation from real to conceptual items for k=3 

real items conceptual items sum score 
2 3 ( 1, 0) (2, 0) (2, 1) ( 3, 0) (3, 1) (3, 2) 

1 l 1 1 * 1 * * 1 
1 0 1 * 1 * * 0 2 

1 0 1 1 * 0 * 1 * 2 
1 0 0 1 * 0 * 0 * 1 
0 1 1 0 1 * * 1 * 2 
0 1 0 0 1 * * 0 * 1 
0 0 1 0 0 * 1 * * 

0 0 0 0 0 * 0 * * 0 

The probability of an observed response pattern y (x) jointly with the observed 

design vector d (x) can now be given by 

Prob (y (x), d (x) 11', �) 
exp [ .E. y (x) ijd (x) ij (b+(i:l)] 

1,J 

II [l + exp (b+( ] d(xllj 
i,j 

ij 

with Ea k (k+ l)/2 dimensional vector with elements Eij (i=l, . .  , k; j=O, . •  , i-1) 

where Eij = 6i+�i(j). It is easily verified that this is nothing but a simple 

reparametrization of the original model. Equation (7) is a simple 

generalization of the likelihood function for the Rasch model to incomplete 

designs. of course, a similar derivation may be made for experimenter 

( 7) 

controlled models, and a straightforward generalization yields a similar result 

for mixed models. Although the likelihood function for the experimenter 

controlled case is formally identical to (7), with the design vector being a 

function of z instead of x, the estimation problems are quite different, as 

will be discussed in the next section. 

Estimation 

Glas (1988) has investigated the estimation problems in the Rasch model 

for so called multi-stage testing procedures, i. e. , designs where the sequence 

of tests administered is controlled by the sequence of test scores of the 

testee. on the level of conceptual items, the design used to analyze data under 

a subject controlled model in the present paper can be viewed as a limiting 

case of a multi-stage testing design, where all tests consists of one item 
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only, and the next test to be administered depends on the sum score R1 obtained 

in the preceding tests. The main result of Glas is the conclusion that in the 

case of a multi-stage design, CML estimation is not applicable, while MML in 

general yields consistent estimates. 

With respect to CML estimation, the argument can be summarized as follows. 

The test administration design and the sum score are a sufficient statistic for 

�- CML estimation in incomplete designs amounts to maximize the conditional 

likelihood function, where the condition is the sum score and the design 

jointly . (See Fischer, 1981 for details). For the design presented in Table 1, 

it is easily verified that, given the design (i.e., the location of the stars) 

and the sum score, the response vector X is completely determined. This means 

that the restricted sample space, as a result of the condition, is a singleton, 

and its likelihood is trivially identical 1, so that it cannot be used to 

estimate the structural parameters. The situation is totally different for 

experimenter controlled models, where the control over the design vector is 

completely independent of x, so that for every observed x, kl different 

transformations Y(X) are possible. so, conditioning on the design implies no 

restriction whatsoever on the sample space of X and CML can be applied straight 

on. 

In order to be able to estimate the parameters in subject controlled or 

mixed models, one has to take recourse to the MML procedure. In contrast to 

complete designs however, one has to use (7) as the likelihood function, 

implying that not only the distribution of Y(X) has to be taken into account 

but also the distribution of D (X), which is also dependent on the model 

parameters. However, by a theorem of Rubin (1976), it can be shown that in the 

present case the design is ignorable, meaning that maximum likelihood estimates 

yield the same values if the design variables are treated as fixed constants. 

The core of the argument amounts to the statement that the subject control over 

the design is completely reflected in the observed responses, or conversely, 

the distribution of D (X) is independent of the value of the non-observed 

responses (i. e. , what is hidden behind the stars in Table 1). 

Now let nx be the number of observations having X=x, then the log-likelihood 

function to be maximized is given by 

lnL((,cp) ""Enx lnf Prob(y(x)ld(x),&;() g(b;q1)db, 
X 

(8) 

where g(�;�) is the probability density function of�, indexed by the parameter 

vector�- Notice that in (8), the design vector appears as a condition, as 
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opposed to (7) where it appears jointly with the response vector. This change 

is justified by Rubin 's argument on the ignorability of the design. If it is 

assumed that� is normally distributed, (8) has the same form as a usual item 

response log-likelihood function with incomplete data (see e. g. Mislevy, 1984), 

and as a result, the computational procedures for estimating the model, such as 

the EM-algorithm (Bock & Aitkin, 1981) can be directly applied. With respect to 

identification of the model, some assumption has to be made with respect to the 

distribution: if it is assumed that� is normally distributed with mean zero 

and variance 02, the parameters e need no further restrictions. Because of the 

equivalence of the dynamic model with the Rasch model, as applied in incomplete 

designs, the expressions for the likelihood equations and the asymptotic 

confidence intervals are equally valid in both cases and can for instance be 

found in Glas & verhelst (1989) or Glas (1989). The conditions for the 

existence of a solution to the likelihood equations with MML are not yet 

completely clarified, although experience with the model shows that few 

restrictions seem to exist. At any rate it is necessary that at least one 

positive and one negative response is given to each conceptual item. Although 

this restriction is not very severe when working in complete designs, it should 

be kept in mind that the number of conceptual items grows quadratically with 

the number of real items: for k real items there are (in the subject controlled 

version of (4)) k (k+ l)/2 conceptual items. This implies that for the parameters 

to be estimable, substantial variability in response patterns will be required. 

of course it is always possible to remove conceptual items ad hoe from the 

analysis, but a more elegant procedure consists in imposing restrictions on the 

parameter space of the general model and thus generating special cases. This is 

the topic of the next section. 

Linear Restrictions on the Parameter Space 

starting with the model defined by (7) and (8), it is possible to derive 

several interesting special cases by imposing linear restrictions on the 

parameters e. so let ry be an m-dimensional vector, m < k (k+l)/2, such that 

ry = Be, with B a  (constant) matrix of rank m. As above it is assumed that� is 

normally distributed with mean zero and variance o2• The following models are 

identified. 

(i) Amount of learning is independent of the preceding items, yielding the 

restrictions 
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j =O. 

j>O. 
( 9) 

(ii) As a further restriction of the previous model, one may suppose that 

the amount of learning after each success is constant, yielding 

(10) 

(iii) A two operator model can be constructed by assuming that the amount 

of change in latent ability is not only a function of the number of previous 

successes, but also of previous failures. The most general version of a two 

operator model with commutative operators is given by 

6i if i=O. 

6i +pj if i>l and j =i-1, 

�ij 
= ( 11) 

6i +Ei-j-1 if i > 1 and j =O, 

6i +pj +Ei-j-1 otherwise. 

It can easily be checked that (11) is a full rank repararnetrization . 

(iv) Analogously to (i), one can assume that the amount of transfer is 

independent of the item, specialising case (iii) further by imposing pj = jp 

and i:j = ji:. 

(v) It can be assumed that the effect of an incorrect response is just the 

opposite of the effect of a correct response, by imposing the extra restriction 

6 = -£ on the model defined in (iv). 

(vi) Finally, one could assume as a kind of limiting case that the amount 

of learning is the same irrespective of the correctness of the preceding 

responses. Formally this can be modeled as a further restriction on case (iv) 

by putting p = i:. However in this case the model is no longer identified, if 

the rank order of presentation is the same for each respondent, because the 

parameter of each conceptual item (i, j) is given by 6i + (i-l)P, and the value 

of p can be freely chosen, because adding an arbitrary constant c to p can be 

compensated for by subtracting c/ (1-i) (i>l) from 6i. Besides, in this case, 

there is no more subject control. If for example the learning effect is caused 

by giving feedback after each response, or by the item text itself, or in 
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generic terms by some reinforcer not under control of the testee, the above 

model is also a limiting case of experimenter control, limiting in the sense 

that there is no variability in the reinforcement schedule. so the solution to 

the identification problem is simple: introducing variability in the 

reinforcement schedule will solve the problem. For this restricted model, where 

the amount of learning increases linearly with the rank number of the item in 

the sequence, it suffices to administer the test in two different orders of 

presentation to two equivalent samples of subjects. Let in the ordered pair 

(i, j) (the conceptual item) i represent the identification label of the item 

and j the rank number in the presentation, then €ij = 6i + (j-1)�, and the 

model is identified if there is at least one i such that (i, j) and (i, j') , 

j # j• are conceptual items. 

Testing the Model 

In many instances, one may be interested in testing the validity of a more 

restricted model against a more general case . Let ry2 = B2€ represent the 

general case and let ry 1 = Bry2 = BB2€ with m1 = rank (B) < rank (B2) = m2 represent 

the restricted model. Furthermore let L
1

(�1, 03
1
) and L2 (�2, 022) stand for the 

maximum of the likelihood function in the restricted and the general model 

respectively. since both models are parametrized multinomial models, standard 

asymptotic theory applies and 

(12) 

has an asymptotic chi square distribution with m2 - m1 degrees of freedom. 

The Relationship With Mathematical Learning Theory 

Mathematical learning theory is an area that has kept much attention among 

mathematical psychologists in the early sixties. The chapters 9, 10 and 17 of 

the Handbook of Mathematical Psychology (Luce, Bush & Galanter, 1963) were 

entirely devoted to formal learning models and contain many interesting 

results . To get a good impression of the scope of these models, and of the 

problems that were recognized to be difficult, an example will be given. In the 

avoidance training, an animal is placed in a box, where it can avoid an 

electric shock by jumping over a barrier within 10 seconds after the occurrence 

of a conditioned stimulus (a buzzer sound) . In a simple learning model it is 

assumed that (a) learning, i.e. , a change in the tendency to avoid the 
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threatening situation before being shocked, occurs only on escape trials, i.e. 

when the animal escapes after being shocked; (b) the 'inherent' difficulty of 

the situation is constant and (c) there are no initial differences between the 

animals in the initial tendency to avoid chocks. of course this theory implies 

subject control. If the trials are identified with 'real items', then (b) and 

(c) imply that 6i is constant, say 6i = 6, and that the initial ability� is 

constant. Letting an escape be a success, the probability of a success on trial 

i, given ri successes on previous trials is given by 

(13) 

where v = exp(�+6) and a =  exp(�), which is known as Luce's (1959) one-operator 

beta model. If it is assumed that there is some learning following a failure 

(an avoidance), then 

Prob (Xi =1 Iv, R (X) =j) (14) 

with a1 = exp(�) and a2 = exp(£), which is equivalent to Luce's two-operator 

beta-model. so this model is just a special case of case (iv) discussed above. 

The assumptions of no variability in the difficulty parameters or in the 

initial� are characteristic for the many learning models developed roughly 

between 1955 and 1970. The lack of variability in the difficulty parameters may 

be attributed ma�nly to the fact that most applications concerned experiments 

with constant conditions over trials, while the assumed constancy in initial 

ability was recognized as a problem: '( .. )in most applications of learning 

models, it is assumed that the same values of the initial probability ( ... ) 

characterize all the subjects in an experimental group. ( ... ) It is 

convenience, not theory, that leads to the homogeneity assumption' (Sternberg, 

1963, p. 99). The convenience has to be understood as the lack of tools at that 

time to incorporate individual differences as a genuine model component, and 

the rather crude estimation procedures which were used. Maximum likelihood 

methods were used, although rarely, only in conjunction with Luce's beta-model; 

but this model was by far less popular than the family of linear models 

introduced by Bush & Mosteller (1951), where the probability of a success can 

be expressed as a linear difference equation, while Luce's model can be written 

as a linear difference equation in the legit of success probability. Most 

estimation methods in the linear model were modified moment methods, frequently 
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yielding problems, because it was clearly acknowledged that suppression of 

interindividual variability would underestimate the variance of almost every 

statistic: ' (  . . .  ) unless we are interested specifically in testing the 

homogeneity assumption, it is probably unwise to use an observed variance as a 

statistic for estimation, and this is seldom done' (Sternberg, ibid.) .  

The final example that will be given serves a triple purpose: (i) it is an 

example of a mixed model with non commuting operators, i. e. , (1) applies but 

(4) does not ; (ii) it illustrates the rich imagination of the older learning 

theorists and at the same time their struggle to handle rather complex 

mathematical equations and (iii) it yields a nice suggestion to construct a 

statistical test for the axiom of local stochastic independence in the Rasch 

model. The model is the 'logistic' variant of the one-trial perseveration model 

of Sternberg (1959) . The model was developed because the autocorrelation of lag 

1 in the response pattern X was larger than predicted by the theory of the one 

operator linear model, suggesting that apparently there was a tendency to 

repeat the preceding response . (the experiment was a binary choice experiment, 

where one choice was systematically rewarded by a food pellet; the subjects 

were rats). Defining the choice of the non-rewarded response as a success, the 

model Sternberg proposed is given by 

(15) 

where Pi = Prob (Xi=l), a is the parameter expressing the learning rate, and b 

is the perseveration parameter, expressing the tendency to repeat the previous 

response. The logistic analogue, mentioned in Sternberg (1963, p.36), but not 

analyzed is given by 

logitpi = 'O+ (i-l)l3+yX1_1., (i>l), (16) 

where � =  legit p1 is treated as a constant. Equation (16) is readily 

recognized as a special case of (2), where 6
i 

= O, g
i

(Zi) = (i-1)� and fi
(Xi ; = 

�xi_1 . Notice that fi (.) is not symmetrical, so (16) is not a special case of 

(4). Notice further that (16) is more flexible than (15): by the restrictions 

put on the perseveration parameter b, tendencies to alternate the response 

require another model, while in (16) a positive � expresses a perseveration 

tendency, while a negative � expresses a tendency to alternate . 

It is immediately clear that (16) violates the assumption of local 

stochastic independence. Now suppose data collected with an attitude 

questionnaire are to be analyzed with the common Rasch model, but there is some 
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suspicion of response tendencies, in the sense of for example a tendency to 

alternate responses. Model (16) is readily adapted to this situation: set 

� = O, allow variation in the 'difficulty• parameters 6i and in the latent 

variable�- There are 2k-l conceptual items: (i,O), (i,l) for i>l, and (1,1) -

(1,0), the second member of the ordered pairs being equal to the previous 

response. The assumption of local stochastic independence can be tested with a 

likelihood ratio test as explained in the previous section using a restricted 

model where � =  O, but this is nothing else than the common Rasch model. 

conclusion 

The model proposed in this paper (equation (2)) is in fact nothing else 

than the common Rasch model. Its power to handle dynamic data stems from the 

manipulation with incomplete designs by the introduction of 'conceptual items'. 

The general model, defined by (2), however, is much too general to be 

identified, and therefore a large subclass of models is defined, where the 

influence of past events, whether subject controlled or experimenter 

controlled, does not extinguish. Although this family is rich, it may be 

rejected as a whole because of this insensitivity, in spite of the attractive 

features of commutative operators. However, specializations of (2) to non 

commuting subfamilies, such as the one trial perseveration model are feasible, 

and open up possibilities to test the basic axiom of local stochastic 

independence. Model tests are straightforward in a class of nested submodels: 

simple likelihood ratio tests are applicable. As to the parameter estimation, 

two results are crucial in the case of subject controlled or mixed models. The 

first is the clear exposition of the reasons why CML is not applicable (Glas, 

1988), so that recourse had to be taken to MML. The second is the important 

result by Rubin (1976), which allows to ignore the stochastic character of the 

design variable. Although no Bayesian approach was used for the estimation, it 

may be reconforting to learn that the design is also ignorable in this context, 

as was shown by Rubin in the same article. CML is only applicable in 

experimenter controlled models. As a possible application, it was shown how to 

develop a simple data collection design to test for order effects in test 

taking. 

The comparison with a large class of mathematical learning theories, viz . 

Luce 's beta-model, and all 'logistic' variants, such as (16), which does not 

follow from Luce's choice axiom, revealed that these learning models are all 

special cases of (2) in two respects: they do not allow variability in the 
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' inherent' difficulty of the item or trial and most important, they are not_ 

able to explain individual differences. At the time mathematical learning 

theories where flourishing, important papers, nowadays acknowledged as the 

founding papers of IRT (Ferguson, 1942; Lawley, 1943; Lord, 1952 and Rasch, 

1960), were available. The contact seemingly never took place. The model 

presented here does not have the two aforementioned restrictions: the 

variability of the latent variable is almost the defining characteristic of IRT 

models and by allowing items or trials to have their own specific parameters, 

learning theories can find their applications outside the psychological 

laboratories, for example, in educational testing. 

Not all problems are solved however. A very hard one was hidden in an 

ellipsis in the first quotation of Sternberg. The full text reads: '··· in most 

applications of learning models, it is assumed that the same values of the 

initial probability and other parameters characterize all the subjects in an 

experimental group . . .  '. The underscored text refers to the possibility that 

learning effects also may show individual differences. These, however, are not 

easily built into the general model, this means it is easy to attach a 

subscript to some parameter symbols, but it is not easy to estimate individual 

learning parameters. 
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