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Abstract 
The article describes a general Gibbs sampler for structural measurement models 
consisting of an item response model for item responses conditional on ability, and a 
structural model for ability. We focus on an algorithm to simulate from the posterior 
distribution of ability. The algorithm, which we call the conditional-composition 
algorithm, can be used with any item response model and can be used in large scale 
applications in educational measurement. 
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1. Introduction 

As a rule, large-scale applications in educational measurement use structural 
measurement models for data analysis. A structural measurement model, as defined 
by Adams, Wilson, and Wu (1997), consists of two parts: a monotone, unidimen
sional item response theory (IRT) model for the conditional distribution P(xl0) of 
the item responses x as a function of an ability 0 and a structural model for the dis
tribution of ability J(0ly) as a function of measured characteristics of the persons 
y. Conditional on ability, the responses are assumed to be independent of y, and 
together, the IRT model and the structural model determine the statistical model 
for the distribution of the data 

P(xly) = L P(x, 0/y)d0 = L P(x/0)J(0/y)d0. (1) 

The class of structural measurement models encompasses a wide range of models 
including the multi-level latent regression models that are used in projects such as 
PISA or NAEP to deal with data involving a hierarchical nesting of persons, e.g., 
students within schools. There is general agreement that a Bayesian approach is 
useful to handle the complexity of these models. In this paper we present a Markov 
Chain Monte Carlo (MCMC) algorithm that can be used for Bayesian inferences 
in structural measurement models when the IRT model is known. Specifically, we 
developed a Gibbs sampler for drawing a sample from the joint posterior distribution 
of ability and the parameters of a multi-level regression model. 

The Gibbs sampler (Geman & Geman, 1984) is a well-known abstract divide
and-concquer algorithm for generating a dependent sample from a complex multi
variate distribution. The interested reader is referred to Casella and George (1992) 
or Tanner (1996, 6.1) for a general introduction to the Gibbs sampler and to Fox 
(2010) for a survey of applications in educational measurement. Formally, the Gibbs 
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sampler generates a Markov chain for which the (posterior) distribution from which 
a sample is desired is the invariant distribution. In each iteration, a sample is drawn 
from so-called full conditional distributions: i.e., distributions of one (set of) vari
able(s) conditionally on all the other variable(s). Here we wish to sample from the 
posterior f ( 0, r Ix, y), where r denotes the parameters of the structural model. In 
each iteration it of the Gibbs sampler, a sample is drawn from two full-conditional 
distributions: 

1. Abilities 9(it+l) = ( ef it+I), 
. . .  , et+l)) are sampled from 

f (01x, y, r(it)) ex P(xl0)f (eJy,r(it) )' 
the posterior distribution of ability. 

2. With these abilities we sample r(it+I) from 
f ( I'lx, Y, 9(it+l)) = f ( rjy, 9(it+I)). 

(2) 

(3) 
Values drawn from the posterior distribution of ability are commonly called plausible 
values (PVs; Mislevy, 1991). In this paper, we present a generic algorithm to generate 
the PVs which we call the conditional composition (CC) algorithm. The second 
sampling problem is of less concern since it is a routine matter for the normal 
regression models used in educational measurement (see Gelman, Carlin, Stern, & 
Rubin, 2004; Fox, 2010). In our discussion of the sampling of PVs, we will provide 
the details of a Gibbs sampler for multilevel linear latent regression. Simulation will 
be used to illustrate that this Gibbs sampler can be used to deal with real problems 
in real time. 

PVs are commonly calculated in large-scale educational surveys to provide a 
complete data set that can be used for secondary analyses. Two options are cur
rently available. The first is to use an existing MCMC algorithm for IRT models, 
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assuming that the item parameters are known. Most MCMC algorithms for IRT 
models have been inspired by Albert (1992) who proposed a Gibbs sampler for a 
random-effects 2-parameter normal-ogive model with a normal distribution for abil
ity (see Tanner, 1996, 6.2.5). This is a very simple algorithm due to the clever use 
of latent item responses as auxilliary variables. All related samplers use this form of 
data augmentation (Tanner & Wong, 1987), although it causes a positive dependence 
between subsequent PVs which slows down convergence of the Gibbs sampler ( e.g., 
Fox, 2010, p. 77). Albert's work has been generalized to estimate more complex 
structural models by Beguin and Glas (2001) and Fox and Glas (2001) assuming 
normal-ogive IRT models. Gibbs samplers for logistic IRT models (e.g., the Rasch 
(1960) or the 2PL model) have been developed by, e. g. , Maris and Maris (2002) and 
Maris and Bechger (2005). Each of these Gibbs samplers is specific for a particu
lar model. To obtain a generic algorithm that works for all IRT models, Patz and 
Junker (1999) proposed using Metropolis within Gibbs. Maier (2001) applied this 
idea to develop a sampler for a random-effects Rasch model with a multilevel latent 
regression model. 

The second option is to sample from an approximate posterior. Mislevy (1991) 
directly simulated PVs using a discrete approximation to the posterior distribution. 
Thomas and Gan (1997) used a normal approximation and refined this approxima
tion using a Sampling Importance Re-sampling algorithm (SIR; Rubin, 1987). The 
advantages of the present algorithm are that it can be applied to any IRT model, 
that it does not use data augmentation and hence generates a Markov chain with 
(much) less autocorrelation, and that it provides a sample from the exact posterior. 

In the following section, a simple example is presented to illustrate the CC al
gorithm. This sets the stage for a formal introduction of the algorithm. We then 
discuss how the algorithm can be made more efficient when dealing with large data 
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sets. The greatest efficiency is obtained when the IRT model belongs to the expo
nential family: e. g., the Rasch model that is used in PISA. Our assumption that the 
IRT model is known is a mild one for exponential family IRT models which can be 
fitted independently of the structural model using conditional likelihood methods. 
Finally, a Gibbs sampler for latent multilevel regression is introduced. Throughout, 
small simulation studies will be presented to illustrate the behaviour and efficiency 
of the algorithms. 

2. A Random-Effects Rasch Model 
Assume that a sample of n persons respond to k Rasch items out of the I 2: k 

items in the study. Let Xpi denotes the response of person p to the ith item such 
that 

(4) 

where 0P denotes the ability of person p and 8i is interpreted as the difficulty of item i. 
We assume a normal ability distribution with meanµ and variance <I2

. Thus, we have 
a random-effects Rasch model with a normal distribution for person effects. This is a 
simple but non-trivial example of a structural measurement model. Assuming that 
we have the correct Rasch model, our interest is in obtaining a sample from the 
joint posterior of <I2 and µ: f(µ, u2 jx). To this end, we set up a Gibbs sampler as 
described in the Introduction. 

In iteration it of the Gibbs sampler, we began by generating a PV from the 
posterior of each person: 

(5) 

which depends only on the data through the number of correct answers Xp+ = Li Xpi 

which is sufficient for 0p in the Rasch model. To do this, we first generated a sample 
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(a) n = 5000 and k = 2. (b) n = 1000 and k = 10. 

FIGURE 1. 

Trace plots of µ. 
(0*, x+) from the joint distribution f (0, x+lµ(it) , a(it), o) = P (x+l0,o)f (0lµ(it) , a(it) ) 
using what Tanner (1996) calls the method of composition: i.e. , we generated an 
ability and with that ability a number correct score. The posterior is the distribution 
of ability conditional on the event that x+ = Xp+· To ensure that this condition holds, 
we simply ignored draws where x+ =/. Xp+ · Thus, we repeatedly generated an ability 
from the structural model and a response from the IRT model until the generated 
score equals Xp+ · We set 0iit+1) = 0* when a response was generated that equalled 
the observed response of person p. In pseudo code: 

Repeat: 
Generate 0* from N(µ(it) , a(it) ) 
Generate x* from the  Rasch model with o and 0 = 0* 

Un t i l : x+ = Xp+ 
0iit) 

= 0* 
This is an example of the CC algorithm for exponential family IRT models which 
will be discussed in detail below. Second, we drew µ and a2 from f(µ, a2 18(it) ), 
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Kolmogorov-Smirnov test statistic for 500 Markov Chains comparing the distribution of the 500 

draws from the full conditional ofµ at each iteration compared to iteration 1,000 

the joint posterior of the mean and variance of normal data, a case that has been 
studied extensively. If we assume independent non-informative priors for the hyper
parameters µ and a2 , a sample from the posterior is obtained as follows. First, we 
drew a2 from an Inv-x2 (n - 1, s2) distribution, then we drew µ from N(m, a2), 

where m and s2 denote the sample mean and variance of 9(it) (see, e. g. , Gelman et 
al. , 2004, 3.2). A script for GNU-R (R Development Core Team, 2010) is provided 
in the Appendix. 

We applied this Gibbs sampler to simulatec]. datasets where n = 5, 000 (n = 

1, 000) persons were randomly assigned k = 2 (k = 10) items out of the I = 100 
Rasch items in the study. The item parameters were equally spaced between [-4, 4] 
and abilities are drawn from a standard normal distribution. The Gibbs sampler in 
each simulation was run for 10, 000 iterations, starting from µ(0) = -2 and (a2)(0) = 

2. Figure 1 shows trace plots of µ(it) against it showing that convergence was almost 
immediate in both simulations. To test for convergence of µ we started 500 Markov 
Chains running 1, 000 iterations for both simulations. We compared the distribution 
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of the 500 draws from the full conditional ofµ at each iteration with that at the last 
iteration using a Kolmogorov-Smirnov test. Figure 2 shows the test statistic against 
iterations and confirms that convergence to the stationary distribution is almost 
immediate. Figure 3 shows two density plots of the posterior of µ. Figure 4 shows 
the PV distribution and the true ability distribution and confirms that both are 
the same in the simulations. Figure 5 shows that PVs introduce no autocorrelation 
to the Markov Chain. This is because the PVs for a person in each iteration are 
independent conditional on the model parameters. 

Note that the posterior variance in Figure 3. (b) is larger than that in Figure 
3.(a), while the total number of observations N = n x k is the same in both cases. 
This shows that it is statistically more efficient to have many persons responding 
to a few of the items than the other way around (Lord & Novick, 1968, 11). To see 
this, consider the average of the PVs 

if*= ]:_ 0, 0* 
n � P' 

p=l 

which is an unbiased estimator of the average ability in the population. Since the 
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FIGURE 4. 

Cumulative density plots of 8 (black) and 8* (gray) 

observations for different persons are independent, 
l n Var (0*) = 2 I:Var (0;). n 

p=l 

Using the variance decomposition formula, the variance of 0; is 

Plugging this result in Eq. (6) gives 

11 

(6) 

where Var (E [0;1x
P
]) is the variance of the posterior means and E (Var [0;1x

p
]) 

is the expected posterior variance of person p, both over repeated collection of data. 
The posterior variance is smaller for persons responding to many items, while the 
variance of the posterior means is approximately independent of the number of 
items. This can be shown by approximating (7), assuming that E [0;1x

P
] = 0P and 

E (Var [0;1x
P
]) � a2 /k for all persons p. This implies Var (E [0;1x

P
]) = Var (0) 
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Autocorrelation of PVs for two persons in the two simulations. 
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Note that the second term is not influenced by any assignment of n or k since their 
product always equals N .  The first term, however, is smallest whenever n = N, 
and k = l. Thus, if we are interested in studying the distribution of 0, we want to 
maximize the number of persons in the sample and not necessarily require that each 
person responds to many items. 

3. The Conditional-Composition Algorithm 
The idea is to generate a sample from f(Xp, 0lyp, r(it)) using composition, i.e. , a 

candidate ability 0* for person p is sampled from the structural model J(0plYp , r(it)) 

and used to sample a response pattern x* from the IRT model p(xp l0*). Repeating 
these two simulations provides a set of ordered pairs { 0;, x;}. If we then ignore 
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all pairs where x; =J. Xp, we obtain a sample from the posterior f (0lx.p, yp)- The 
algorithm in pseudo code is then 

Repeat : 
Generate 0* from f (0lyp) 
Generate x* from p(xl0*) 

Un t i 1 : x* = xP 

0p = 0* 
We call this the Conditional Composition (CC) algorithm because it uses the method 
of composition to sample from a conditional distribution. 

An algorithm is only an algorithm when it is guaranteed to stop at a certain 
moment. We therefore assume that item responses are discrete and there is a positive 
probability of generating the observed response pattern. Nevertheless, it is clear that, 
for any test of nontrivial length, there are many possible score patterns and it may 
take a long time for the CC algorithm to produce a PV. However, the CC algorithm 
is feasible when each person responds to a small number of items. In the next section, 
we discuss ways to make the algorithm more efficient when the number of persons 
taking a test and/ or the number of items is increased. 

4. Gaining Computational Efficiency 
When the purpose is to make inferences about the structural model and we are 

not interested in the abilities of individual students, it is more efficient in a statistical 
sense to have many persons respond to a few items each than to have few persons 
responding to many items. An illustration was given earlier. Thus, our first priority 
was to adapt the CC algorithm to deal with many persons, this is discussed in the 
following section. We then describe t.he CC algorithm for the situation where the IRT 
model is a member of the exponential family. The advantage of an exponential family 
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IRT model is that posteriors depend only on the data via the sufficient statistic for 
ability: e.g., the number of correct answers in the Rasch model. There are many 
response patterns that lead to the same sufficient statistic and the CC algorithm 
runs until it finds one of them. 
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FIGURE 6 .  

Number of  seconds for 100 consecutive iterations Gibbs Sampler 

4 .1 .  Many Persons: Recycling 

When the basic CC algorithm is used to generate a PV for person p, it discards 
all candidate abilities that generate a score pattern that does not match that of 
person p. A simple way to make the algorithm more efficient is to make use of 
these intermediate candidate values. We grouped persons responding to the same 
items according to their value on the background variables y. Intermediate candidate 
values 0* that generate a response pattern x* can be assigned to any person p in the 
same group whose response pattern matches x*. Thus, instead of sampling a PV for 
each person, we generated nx PV s for each response pattern. In pseudo code, this 



leads to the following algorithm which we call the CC-R algorithm.: 

Repeat : 
Generate 0* from J(0ly) 
Generate x* from p(xl0*) 
I f  nx• > 0 ,  then Rnx• ,Cx• = 0* and nx• = nx

• - 1 
U nti l  nx = 0 , Vx 
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The PVs are stored in a matrix R and Cx denotes the column in R corresponding 
to response pattern x. If necessary, the PV s can then be assigned to persons in the 
sample. 

If there is only one person in each marginal distribution defined by y, the CC-R 
algorithm reduces to the basic CC algorithm. Thus, recycling becomes more efficient 
when there are few groups with many persons in each group. The efficiency of 
recycling is further determined by the time it takes to find PV s for each observed 
response pattern in a marginal distribution. A nice aspect of the CC-R algorithm is 
that it is self-weighting in the sense that, if the model fits the data, the probability 
to generate each response pattern will match the proportions in the data. Hence, 
we expect iterations to become faster as the Gibbs sampler converges. A simulation 
is used to illustrate this. Data were generated using k = 5 Rasch items with item 
parameters equally spaced between [-2, 2] and n = 1, 000 persons sampled from a 
standard normal distribution. A Gibbs sampler was used to estimateµ and a. The 
starting values µC0) = -2 and (a2 )<0) = .3 are far off from the true parameters, and, 
consequently, the Gibbs sampler takes a great deal of time in the first step. In Figure 
6, the time of each consecutive iteration is plotted for the first 100 iterations and 
confirms that time decreases significantly when the Markov Chain converges. 



16 

4-2. Many Items: Exponential Family IRT Models and the CC Algorithm 
If the IRT model belongs to the EF, all information about ability is contained in 

the sufficient statistic. Specifically, :xpJL 0p jtp , where tp = t(:xp) denotes the sufficient 
statistic for the ability of person p. It follows that 0pJL Xp jtp , according to Theorem 
3.1 in Dawid (1979), implying 

f (0pltp , Yp) = f (0p jxp , tp , Yp) 
= f (0pltp , Yp) 
ex p(tpl0p)f (0plYp)-

That is, the posterior distribution of person p is characterized by tp instead of :xp. 
Thus, to sample a PV for person p, a candidate value 0* is sampled from f (0P IYP) 
and tp is sampled from p(tpl0*) conditional on the candidate value. In pseudo code, 
the algorithm which we call the CC-EF algorithm is 

Repeat: 
Generate 0* from f (0lyp) 
Generate t* from p(tl0*) 

Un t i l : t* = tP 
0p = 0* 

The efficiency of the algorithm is determined by the number of response patterns 
corresponding to the same value of the sufficient statistic. In the Rasch model, for 
example, the sufficient statistic is the number of correct score I:7 Xip = X+p· With 
10 binary items there are 210 = 1024 different response patterns to consider, but 
only 11 different scores. 
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4 .3. Many Persons and Many Items: Recycling for EF IRT models 

When an EF IRT is used to generate PVs for persons in the marginal distribution 
f(0ly) , the intermediate candidate abilities 0* that generate a sufficient statistic t* 
can be assigned to any person p in the marginal distribution (i. e. , all persons p with 
YP = y that respond to the same items) for which t* = tp . Let nt denote the the 
number of persons in the marginal distribution with statistic t. We generated an iid 
sample of size nt from f (0lt) for each statistic t. In pseudo code, this leads to the 
following algorithm which we call the CC-R-EF algorithm: 

Repeat : 
Generate 0* from J(0ly) 
Generate t* from p(tl0*) 
I f  nt• > 0 ,  then Rnt• ,ct• = 0* and nt• = nt• - 1 .  

Unt i l  nt = 0, Vt 
The PVs are stored in the matrix R, and ct denotes the column in R corresponding 
to the statistic t. 

5. Efficiency of the Different CC Algorithms 
Data for the random effects Rasch model were simulated and used to illustrate 

performance of the different CC algorithms: item responses of a small sample of 
n = 1, 000 persons to k = 2, 5, 10 and 100 items, and a larye sample of n = 1, 000, 000 
persons to k = 5 and 10 items. We assumed that k = I ,  i. e., the number of items in 
the study equals the number of items taken by each person. Item parameters were 
sampled from a uniform distribution in the range [-2, 2] . Ability parameters were 
sampled from a standard normal population. The different CC algorithms were used 
to produce five PVs for each person and we averaged the number of trials needed to 
produce one PV for each person. The results are in Table 1. 



18 
TABLE 1 .  

Average number of trials 

n = l , 000 
k cc CC-R CC-EF CC-R-EF 
2 3.970 1.087 2.937 1. 030 
5 34.864 4.487 5.793 1.170 

10 1146.439 285.928 10. 182 1.333 
100 93.561 3.888 

n = l ,  000, 000 
k cc CC-R CC-EF CC-R-EF 
5 1.089 5.997 1.004 

10 1.304 
Table 1 confirms that the CC algorithm ("CC" ) took longer to assign PVs to 

each person when k became larger. The number of trials was greatly reduced when 
we used the CC-R algorithm ("CC-R" ) and the sample size increased. However, the 
efficiency of both the CC and CC-R algorithm decreased when persons responded to 
more items. Table 1 confirms that compared to the CC and CC-R algorithms, the 
CC-EF algorithm is more efficient when there are more items. For instance, when the 
small sample responded to two items the CC-EF algorithm was 3.970/2.937 = 1.351 
times more efficient than the CC algorithm, but when they responded to ten items it 
was 1, 146.439/10.182 = 112.594 times more efficient. As expected, the results show 
that the number of trials required by the CC algorithm is approximately 2k whereas 
the CC-EF algorithm requires approximately k + l trails. It is clear that the CC
R-EF algorithm ("CC-R-EF" ) is most efficient. Compared to the other algorithms, 
its efficiency increases when both the number of items and the number of persons 
increases. 
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6. A Gibbs sampler for multilevel IRT models 

A general framework for multilevel regression models in the context of structural 
IRT models was introduced by Fox and Glas (2001) and Fox (2010) . A multilevel 
model for school s including the effect of np student characteristics (level one pre
dictors) on ability is 

(8) 

where Ys is a n8 x np matrix containing the student characteristics, e8 is a np x 1 
vector containing student-specific residuals and /3 s is a np x 1 vector of random 
effects for school s. The elements in e8 are i. i.d. Normal(0, a-) variates. The random 
effects for school s are the outcome of a regression model defined at the school level 
including the effects of nq school-specific covariates 

(9) 

where w 8 is a np x nq matrix with school characteristics and , is a nq x 1 vector 
of fixed effects. The matrix w s contains the stacked vectors wfs for the jth random 
effect at school s relating to the fixed effects 1. That is, 

T 
W1s 

0 
Ws = 

0 

0 
T 

W2s 

0 

0 

T 
wnps 

The np x 1 vector r s contains school-specific residuals. It is multivariate normally 
distributed with zero mean and variance-covariance matrix :E,a . 

6. 1 .  Full Conditionals for the Multilevel Model 
Given that we have a sample of PVs, the Gibbs sampler requires full conditional 

distributions for (sets of) parameters from Eqs. (8) and (9) considering the PVs as 
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data. The posterior distribution of a, , , {3 and �.B using prior independence of a, , 
and �.B is 
J( 1,/3, �.B , a j8,  y, w) ex (10) 

[ ◊i) �" exp (-2�, (0., - y,,fi,)2) ] f(<T) [ � /(7,)] [◊ f (fi,IEp)] f(Ep) 

where f(a), f(,), f(f3s 1 �.a) and f(�,a) are prior distributions. The /38 are a priori 
exchangeable conditional on �.B - We derived the full conditional distributions from 
which to sample for the above model using specific choices for the prior distributions. 
Different prior distributions lead to different full conditional distributions and the 
reader is referred to Gelman et al. (2004) and Fox (2010) for other options. 

Using Eqs. (10), (8) and (9) the full conditional distribution for {38 is proportional 
to 

f(f3s 1 Y, w, 8, a, 'Y, �,a) ex 
exp (-� [a-2 (8s - ysf3sf (8s - Ys/3J + (/38 - Ws'Yf �t (/3s - Ws,)] )  · 

We see an exponent with two terms which are quadratic in the parameter vector 
of interest. To transform the full conditional into tractable form, we expanded the 
terms in the exponent and discarded terms not depending on {38 • Complet ing the 
square gives 

N ( (  -2 T + �-1) -l ( -2 T
9 

+ �-1 ) ( -2 T + �-1) -l) a Ys Ys �.a a Ys 8 �.a Ws'Y ) a Ys Ys �.a 
(11)  

Using Eq. (10) and assuming an independent Normal prior with mean zero and 



21 

variance O"� for the elements in "Y results in the following full conditional for "'(: 
fblY, w, 0, O", /3, :Ei1 , (T,, ) ex 

exp (-� [ t ({:I, - W,")' f E;;' ({:I, - w ,")') + u,;-2.,,r "l'] )  . 
As before, we have an exponent with two terms which are quadratic in the parameter 
vector of interest. Completing the square gives 

with Ing the nq x nq identity matrix. 
Using Eq. (10) and assuming an Inverse Wishart prior distribution with a pos

itive definite inverse scale matrix :Ei3* and ni3* � np degrees of freedom, produces 
the following full conditional distribution for :Ei3: 

since 

and 

(/38 - Ws"Yl :E{i1 (/38 - Ws"Y) = trace ( (/38 - Ws"Yf :Ei1 (/38 - Ws"Y)) 
= trace ( (/3s - Ws"Y) (/38 - Ws"Yl :Et) , 

trace ( (/38 - W8"Y) (/38 - W8"'fl :Ei1
) + trace (:Ew :Ei1 ) 

= trace ( [cas - Ws"Y) (f3s - Ws'Yl + :Ei3*] :Ei1 ) ' 
it follows that the full conditional for :Ei3 is proportional to an Inverse Wishart 
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distribution 

f(�,a lw, ,, ,8, �,a•, n,a• ) ~ (13) 

Inverse-Wishart ( t (,8, - w,-y ) ([j, - w ,-yf + Es• , S + ns•) 
Using Eq. (10) and assuming a Gamma prior distribution with parameters au 

and bu for the precision ;2 , results in the following corresponding full conditional 
distribution: 

( 1 ) 
�+au-l ( 1 S T ( 1 ) ( 1 ) ) (J2 

exp -2 � (6s - Ys/38) (6s - Ys/38) 
(J2 - bu (J2 • 

in which we recognize the Gamma distribution 
f (u-2 I Y, 6, ,8, au , bu) ~ (14) 

Gamma ( i + a. , ½ t (II, - y,{3,f (11, - y,/j,) + bu) . 
Exactly the same Gibbs sampler is given in (Fox, 2010, Chapter 6.5). 

6.2. Simulated Example 
We simulated data using Eq. (8) as a structural model and the One-Parameter 

Logistic Model (OPLM; Verhelst & Glas, 1995) as the measurement model. The 
OPLM model is 

(15) 
with Xpi = 1 when person p gives a correct response to item i and Xpi = 0 otherwise. 
Each item is characterized by a positive integer-valued discrimination parameter 
ai and difficulty parameter bi . The OPLM model is an EF IRT model with tp = 

I:7 aiXpi sufficient for 0P . 
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A dataset was simulated consisting of S = l ,  000 schools with n8 = 15 stu
dents each, responding to k = I =  20 OPLM items. The discrimination parameters, 
a =  [ai ] ,  were randomly chosen from (1, 2, 3, 4). The difficulty parameters, b = [bi ] ,  
are random variates drawn from an Uniform(-4, 4) distribution. The ability pa
rameters were generated using the model in Eq. 8 with np = 5 random effects and 
n

q 
= 10 random effects. The first column of the matrix y was set to one, and 

the remaining np - l columns filled with random draws from a Bernoulli(0.5)  dis
tribution. The matrix w8 was an n

p 
x n

q 
diagonal matrix with diagonal elements 

w'fs = wfs = . . .  = w-;;,ps , where w18 was a 2 x 1 column vector of school characteris
tics, of which the first element was set to one and the second element was a random 
draw from a Bernoulli(0.5) distribution. Thus there was one school level covari
ate included for each random effect. The vector , consisted of n

q 
random variates 

from a Normal(O, 1) distribution. The vectors f3s were drawn from a Multivariate 
Normal(O, :E13 ) distribution. The level one residual variance a was set to one, and 
the random effects variance-covariance matrix :E13 had main diagonal elements set 
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to 0.5 and off diagonal elements to 0.1. 
To implement the Gibbs sampler, prior parameters and starting values 9(o) , 

,(o), 13(0) , E1°) and a-(0) had to be specified. The prior parameters for the level one 
residuals were set to aa = l and ba = 1. The prior variance a-� parameter for , 
was set to one. The prior scale matrix Er, was the nq x nq identity matrix and the 
corresponding degrees of freedom nr,• = nq . The elements in 9(o) were generated 
from a standard normal distribution. The vectors ,(o) and f3i0) , for s = 1, 2, . .. , S, 

were set to zero. The level one residual error standard deviation a-(0) was set to one, 
and the random effects variance-covariance matrix E1°) was the nq x nq identity 
matrix. 

The Gibbs sampler proceeds by setting the iteration counter it to zero and 
repeating the following sequence in each of 10, 000 iterations: 

1. Generate PVs 9(it) ~ f ( 8IX, a, b, y, 13(it-l), o-(it-l)) from Eqs. (8) and (15) 
using the CC algorithm for EF IRT models. 

2. Generate parameters of the structural model: 
(a) Generate f3iit) ~ f (f3s 1 Y, w, 9(it) , a-(it-I) , ,(it-I) , Et-1

)) for s = 1, 2, . .. , S 
from Eq. (11). 

(b) Generate ,(it) ~ f ( ,lw, 13(it) , E�t-l), o-1'
) from Eq. (12). 

(c) Generate E�t) ~ f (Er,lw, 8(it), ,(it) , f3(it) , nr,• , Er,• )  from Eq. (13). 
( d) Generate o-(it) ~ f ( 0--2 IY, 9(it) , 13 (it) , aa , ba) from Eq. (14). 

We implemented the Gibbs sampler in R using a C++ routine to generate PVs 1 . 

Figure 7 shows a trace plot of 'Yi and shows that convergence was almost immediate. 
The green line depicts a running average updated at each iteration. Figure 8 shows 

1The R code and c++ routine are available from the first author. 



I! 

-1.0 -0.5 0.0 0.5 1.0 

1, 

(a) Initial 100. 

FIGURE 8. 

• 
-1.0 -0.5 0.0 

11 

. • 

(b) All 10, 000. 

25 

" 

• 

0.5 1.0 

Draws from the joint posterior of ,1 and 12 for 5 separate Markov Chains. The red dots mark the 

starting points. 

the path of 5 Markov Chains with different starting values through the joint posterior 
distribution of 11 and 12 in the first 100 iterations and shows a scatter plot of all 
draws for the joint posterior distribution for the five Markov Chains. The posterior 
density of 11 and 12 are shown in Figure 9. 

7. Discussion 
We have described a Gibbs sampler for structural measurement models and in

troduced the CC algorithm as a generic algorithm to sample PVs. The CC algorithm 
can be used with any IRT model for discrete item responses. It is most efficient for 
applications using an EF IRT model due to the presence of a sufficient statistic for 
ability. For non EF IRT models, the CC algorithm is useful when persons respond 
to few items, which is a good design for large scale educational surveys where inter
est is focused on population inference. When the sample is large, the CC algorithm 
becomes more efficient by recycling, i. e., by using intermediate candidate values. 
Furthermore, recycling makes the algorithm more efficient when the number of per-
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FIGURE 9 .  

Posterior densities of -y1 and -y2 . The solid line shows the estimated density after 100 iterations and 

the dotted line after 10.000. 

sons in the sample becomes larger. An important advantage of the CC algorithm 
is that it does not use data augmentation and generates Markov Chains that have 
much less autocorrelation than samplers that use data augmentation. Since adding 
persons does not introduce additional autocorrelation, convergence is not compro
mised. This makes the CC algorithm attractive for large scale applications such as 
educational surveys. 

We have assumed that the IRT model was known a priori. For EF IRT models 
this is a mild condition since the model can be fitted independently of the struc
tural model using conditional likelihood methods. A straightforward extension is to 
concurrently estimate the item- and structural parameters. 

In closing we mention that the CC algorithm is not limited to unidimensional 
IRT models. It can be applied to multidimensional IRT models where PVs in each 
dimension are generated conditional on the other dimensions. We leave this as a 
topic for future research. 
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8. Appendix 

8. 1 .  R-script for simulating scores from the Rasch model 
Different approaches may be taken to simulate item scores from the Rasch model. 

Here we note that without loss of generality we may assume that there exists a latent 
response variable U such that 

where U follows a standard logistic distribution and P(U :=:; 0p - 8i) denotes the 
cumulative logistic distribution. Note that 

1 exp(0 - 8) - -1 + exp( - ( 0 - 8)) 1 + exp ( 0 - 8) ' 
the probability of providing a correct response to the Rasch model for item i by person p. We use this in our R function Score, where the sum is over the responses per individual: 
Score=function(theta, delta) 

sum(1* (rlogis (length(delta) , 0 , 1) <= (theta-delta) ) )  
} 

8. 2. R-script for the random-effects Rasch model 
For the random-effects Rasch model we sample candidate abilities from a 

Normal(µ, a-2 ) model and use the R function Score to generate test scores based on 
the Rasch model. The scores generated by persons are stored in the vector score 

where pth element corresponds to the score of person p. The full conditional distribu
tion for µ is N(m, a-2), where m denotes the mean of 9(it) .  The full conditional for a-2 

is the Inv-x2 (n - 1, s2) distribution. This is equivalent to the Inv-r (n;1 , (n - l)s2) 

distribution, from which we simulate with the R function rgamma. This is used to 
draw a-2 in the following R script: 



for(it in 1 : niter) 
{ 

for (p in 1 : nPers ){  
repeat 

{ 
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pv [p] = rnorm( 1 , mu, sqrt (sigma) ) 

} 
} 

pscore = Score (pv [p] , delta) 
if (pscore==score [p] ) break 

mu = rnorm(1 ,mean(pv) , sd=sqrt (sigma/nPers) )  
sigma = 1/rgamma( 1 , shape= (nPers-1)/2 ,rate= . 5*var (pv) * (nPers-1 ) )  

} 
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