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Abstract 

Modern methods for optimal test construction require that the values or 

the form of a minimal information function be specified at a few well chosen 

values of the latent variable, the so called specification points. When the 

Rasch model is the IRT model, typically about five specification points suffice 

to prevent that the information of the constructed test has local minima 

between specification points considerably lower than the adjacent specified 

minima. For a typical test length this implies that the asymptotic property of 

the information function as the inverse of the variance-function of the maximum 

likelihood estimator is an adequate interpretation and justification for the 

specification of a minimum information function. As a consequence of the linear 

approach to optimization one has to restrict the specification of measurement 

accuracy to a few important ability classes. Therefore, it seems natural to 

choose the specification points at values of the latent variable that can be 

considered to represent these classes. 

However, when the IRT model allows different discrimination parameters or 

indices, like the OPLM model, local minima of the information function within a 

class may be very much less than the information at the specification point, 

and, moreover, may be responsible for too large deviations from the asymptotic 

property to justify the above procedure. Therefore, a more general 

interpretation of the information function and an associated procedure for its 

specification in test construction is proposed that proves also adequate for 

OPLM or the Birnbaum models. The interpretation clearly shows that the 

information has to be specified at edges that separate ability classes, not at 

abilities that represent classes. 

'Keywords: IRT, Optimal test construction, Test Information. 





Introduction 

Theunissen (1985) was the first to use linear programming techniques for 

computerized test design. Since, several others have contributed to the subject 

(Boomsma, 1986, Razoux Schultz, 1987, Kester, 1988, Gademan, 1987,1989, 

Boekkooi-Timminga, 1989, Boekkooi-Timminga & Van der Linden, 1988, Adema & Van 

der Linden, 1989, Van der Linden & Boekkooi-Timminga, 1989). All these 

approaches assume a calibrated item bank, usually with the Rasch model, but in 

principle they readily generalize to other IRT-models. 

The construction of a test with this approach starts by specifying an 

information function. It is essential to the linear programming approach that 

the information function is specified at a few well chosen values of the latent 

variable 9. A linear program then selects a test from an item bank with an 

information function that exceeds the specified information at the chosen 

values and optimizes some goal function, e.g., a minimum number of items in the 

test. Until now, it was recommended that the information function of the test 

did not show relatively low local minima between the specified values. That is, 

it was in general, not assumed that a test information function with low local 

minima between specified values could indicate desirable measurement 

properties. 

In an earlier report, an argument was constructed, based on Fourier 

analysis of information functions and the sampling theorem (Oppenheim and 

Willsky, 1983), that for the Rasch model about five specifications in the 

interval [-2,2] are sufficient to prevent local minima. The sufficiency of only 

relatively few specification points in the Rasch model to prevent local minima 

is a consequence of the modest steepness of the item information functions. 

However, in more general IRT models that allow for different discrimination 

parameters or indices, like OPLM (Verhelst, et al. 1991), the steepness of item 

information functions shows greater variability and one has to be prepared for 

very steep information functions. The presence of items with relatively high 

discrimination indices in an item bank would result in the just mentioned local 

minima. If one aims at a kind of continuous measurement accuracy, that smoothly 

follows the specified information values, then the density of specification � 
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points must be adapted to this new situation. In that case an analysis along 

the lines followed in the mentioned report would be appropriate. However, we 

show that if one's aim with a test is to classify the examinees in a small 

number of adjacent ability classes, say up to ten, then local minima may even 

be advantageous. 

The Problem of Local Information Minima 

In OPLM (One Parameter Logistic Model) the probability that an examinee 

with ability 8 scores in category j>O of item i (the category response 

function) is given by: 

m1 
(j = 1, .. ,mJ , 

1 + L exp (ai (c8-11 ic)) 
c=l 

(1) 

where mi is the maximum score of item i and ai its discrimination index. In 

OPLM, the discrimination index is not estimated but part of the model 

hypothesis. rt is not difficult to see from (1) that OPLM is a generalization 

of the Rasch model and the Partial Credit model as well. If Vi(ai = 1) then (1) 

represents the Partial Credit model, and if, moreover, Vi(mi = 1) then (1) has 

been reduced to the Rasch model. OPLM is also related to the Birnbaum two 

parameter logistic model. However, because the discrimination indices in OPLM 

are part of the model hypothesis, it yields sufficient statistics for the 

person parameters. As a result Conditional Maximum Likelihood estimates of the 

item parameters can be obtained in contradistinction to the Birnbaum model. 

Denote a random variable with a Roman capital and its realization by the 

lower case equivalent. An OPLM test information function can now be derived as 

follows. Let y be a k  dimensional response pattern vector, where vi = j if an 

examinee scores in category j of item i, and let Y be a weighted sum score of 

y: Y = Iwivi, then in general (Birnbaum, 1968, p. 453), the information 

function of the test score Y has the form: 

I
y 

(-8) = 

( aE(�I 8) r 

( 2) 

cr2 (Y I 8) 
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If, for an arbitrary 8 one varies the weights w1, the value of I
y
(8 ) varies as 

well. Birnbaum proves that the maximum information is attained for optimally 

weighted scores x. The optimum score in OPLM is obtained by putting w1 = a1, 

thus X = Ia1v1 . The information function I(8 )  of the optimally weighted score 

is not indexed by X, and is called the information function of the test. 

The derivative with respect to 8 of E(Xl8 ) for a test of k items is: 

k m1 

E
1 (X I 8) = :E a

1 :E j Pfj (8) 
i-1 j �1 

m1 

Let V 
1 

(8) = E (V1 18) = I; jP
1j 

(8) , then it can be deduced from (1) that: 
J•l 

Substitution of (4) in (3) gives: 

mi 

E
1 (X I 8) = L af L Pij (8) (j 2 -jV i (8)) 

i-1 j-o 

The last inference in (5) follows from local stochastic independence, which 

implies that the conditional test score variance equals the sum of the 

conditional item score variances. 

From (2) and (5) it follows that: 

I (8) = 02 (X I 8) 

For the Rasch model this amounts to: 

I (8) = :E 
i=l 

=� l.=l 
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It follows from (6) that the value of the item information function grows 

quadratically in the discrimination index a1. Moreover, from (1) and (6) it can 

be inferred that the discrimination index functions as a scaling factor. This 

scale dependency of the information function makes it less attractive as a 

starting point for test construction, unless the 9 scale has been given a 

standard interpretation. An obvious possibility is to rescale the 

discrimination indices ir. �n item bank such that their geometric mean or the 

variance of the latent variable in a population of interest equals one. 

To illustrate the difficulties with automatic test design the optimal 

solutions were calculated for the following test construction problem in a 

series of six artificial conditions. The problem is to construct a test with 

the least possible number of binary items with an information function that 

attains values at least equal to 30 at 9 = -1,1. In all six conditions there 

can be selected from an unlimited number of items at�= -1, 0 and 1 with equal 

discrimination indices. The conditions differ in the values of a, the 

discrimination indices, which are 1, 2, 3, 4, 6, 8 resp. The minimum numbers of 

items needed from the artificial item banks are: 153, 57, 28, 16, 8 and 4 resp. 

With the exception of a =  1 the optimum test design procedure selects 

approximately one half of the items from� = -1 and one half from� = 1. For a 

= 1 the minimum number of items is obtained if they are all taken from�= o. 

The information functions of the tests are shown in Figure 1. Clearly, there 

can be a tremendous drop in the value of the information function between 

specified points. The information function of the last two tests almost 

vanishes for 9 = o. The first display in Figure 1 can also be interpreted as 

the item information function of a Rasch item if one takes the maximum value to 

be 38.25/153 = 0.25 in stead of 38.25. How the item information function 

changes by increasing the discrimination index can be inferred by comparing the 

first display with the last, where, for example, the left peak is approximately 

the sum of two item information functions with� = -1. 
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Figure 1. Information functions of optimal tests with information at least equal 
to 30 at 9 = -1 and 9 = 1. The tests are drawn from six artificial OPLH itembanks, 
all with an infinite number of binary items with difficulty parameters -1,0 and 1. 
The itembanks differ in the discrimination parameter of the items: 1,2,3,4,6 and 8 
resp. 
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The Validity of the Asymptotic Property of the Info:nnation Function 

In this section the consequences from a measurement point of view are 

investigated of having low info:nnation for values of 9 in the range of 

interest. Birnbaum (1968, p. 457) asserts that 8, the Maximum Likelihood 

estimator of 9, is asymptotically N(8,1/I(8)) distributed. For the condition 

with a =  8 this would mean that the variance of 8 for 8 in the interval [-½, ½] 

is very large. In fact, for this test of 4 items I(0) = 0. 086, which would mean 

that a2 (8 I 8=0,0) = 11.65. If the asymptotic property would apply then e for 8 

= o.o would be almost uniformly distributed in the interval [-2, 2). In fact for 

9=0.0 the probability of being estimated between -1. 0 and +l. 0 is approximated 

by 1. 0 - 2x� [-0. 5/ (11. 65) ,,,.] = 1. 0 - 2x0. 442 = 0 .116 and it must be concluded that 

the test does not in any way info:nn us about the true 8 if its value is near 

zero. However, this is not the case, as closer scrutiny of the conditional 

score distribution will show. 

Define �10 = o for all i, then it follows from (1) that the probability of 

a score x is: 

P (�aivi = x I 6) cc 
i 

where v again represents an arbitrary response pattern with x = �a1v1 its 

associated weighted sum score. Define Eij � exp(a1(j9-�1j)) for j = o, . .  ,m1• 

Moreover, let 

be called the basic combinatorial function of order x, then (7) can be 

expressed as 

p ( � ai Vi =X I 6 ) - Yx (.e.., .a) 

where z ranges over all possible scores in {O, . .  ,Ia1m1}. 
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As can be inferred from (7) the likelihood as a function of 8, given the item 

parameters, belongs to the exponential family. Therefore, the Maximum 

Likelihood estimator for 8 is defined as 8(E(Xl8')) = 61 • 

The four item test in the example with a =  8 yields the distribution of x and 8(x) 

conditional on 8 = 0.0 presented in Table l. 

TABLE l 

Distribution of x and 8 Conditional on 8 = 0.0 of a Four Item Test 

score 

8(x) 

prob 

0 8 

-1. 00 

0. 00000011 0.00067 

16 

o. oo 

24 

1.00 

32 

0.99866 0.00067 0.00000011 

8 is obtained by Maximum Likelihood given the item parameters. Table l shows 

that the probability of an estimate for 8 = 0 is almost exclusively 

concentrated at this same value. This shows that the information function for 8 

= o underestimates the measurement accuracy for this test. As a matter of fact 

in this simple example the probability of getting a right estimate for 8=0. 0 is 

almost 1.0 and not 0. 1 as expected from the asymptotic property. It must be 

concluded that this property of the information function as the inverse of the 

variance of the maximum likelihood estimator cannot always be properly applied 

to a finite test. 

The larger the discrimination index of an OPLM item, the more it 

approaches a Guttman item. Therefore, this example is pushed to its very 

extreme if a test of 4 Guttman items is considered with difficulty parameters 

as in the example. For this Guttman test the variance of the conditional 

distribution of 8 vanishes everywhere, because the model is detenuinistic. The 

infonuation function of the test equals zero everywhere except at the two item 

parameter values. From (2) and (3) it follows that, at 8 = -1 and l, the 

information function grows to infinity if the discrimination index is increased 

without bound. Everywhere else it vanishes and does not rise to infinity as 

expected from the asymptotic property and the fact that there the variances of 
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the conditional distributions of 8 also vanish. But this test is generally 

viewed as optimal, in spite of an almost everywhere zero information function. 

To advance a proper use of information functions to aid test design, there 

is one more consideration. An information function which is for all 8 in a 

certain interval bounded from below at a high enough value, enables measurement 

on a continuous scale. However, in many cases the measurement result, 

especially in educational measurement, is less refined. Often at most 5 through 

10 ability levels are distinguished. If one takes these levels seriously, then 

it only matters to minimize the probability that a pupil is incorrectly 

classified. 

A More General Expression to Interpret the Information Function 

To aid the interpretation of the information function a simple but more 

general expression for the relation between the measurement error of the ML 

estimator � (x) and the information function will be derived. Consider an 

examinee with ability e* and a test with information function I (8). For this 

examinee the probability will be investigated that he earns a score x such that 

his Maximum Likelihood ability estimate 8 (x) < 8 1
• It was already noted that 

the information function of an OPLM test is equal to the weighted score 

variance. According to (6) a normal approximation of the distribution of the 

weighted score X conditional one* is N (E (Xl8*),I ( 8*)). Then the indicated 

probability is: 

where� denotes the standard normal distribution function. 

(8) 

By definition of the definite integral and using (2) and (5) it follows that: 

e' 

..
. J oE <:al 8) de E (X I 01) - E (X I 0*) 

UV 

e' 

= J < r < e) ) 112 a < x I e) de 
e· 

8' 

=JI (0) d0 

e• 8 

(9) 



Substitution of (9) and (6) in (8) gives: 

9/ 

fr (8) d8 

P (8 (X) <81 I 8*) = � _a· __ _ 

I (8•) 1/2 
(10) 

The approximate conditional distribution of 8 given 8 is elegantly related by 

(10) to the information function. To interpret (V'' one could say that the 

larger the information 'mass' between e* and 8 '<8-*, an edge between ability 

levels, relative to the square root of the information ate*, the less the 

probability that the estimator 8 of e* will be less than 8 1• 

For applications, as in optimal test construction, often the probability of 

finding the estimator 8 of e* in each of several adjacent intervals is needed. 

Let, therefore, 

11" 

Y ( TI 1, TI 11) - JI ( 8) d8, 
11' 

and let -m=8
0
< . .  <8k=m be a partition of the real line that defines k ability 

classes t1=(8 1_1, 8 1) (i=l, . .  , k). Let y1 denote y(8 1_1, 8 1). Next, select some 

interval tj and 8* E tj, and define 

To get the probability that 8 E tm, distinguish between m<j, m>j and m=j. 

First, let l�m<j, and 

C =y (0*,8
j -1) - L Yi 

m<i<j 

so that 

p (8m-1 < 8 < 8m) = p (8 € tm) = p (8 < 8m) - p (8 < em-1> 

Second, let j<�k, and 

D = y (8*,8
j

) + .!: Yi 
J<1<m 

= fl>[z •{C}] - fl>[z •{c - Ym}] 
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and we have 

p (8m-1 < 8 < 8m) = p (8 e: tm) = p (8 < em) - p (8 
< em-1) 

= 'l»[z*{D + Ym}] - �[z*{D}] 

If m=j then 

Although the symbol� in (l0) might suggest that the conditional distribution 

of 8 is normal, as the asymptotic property implies, this is in general not 

true. Note that (10) implies that the validity of the asymptotic property 

depends among other things on how close I (B) in the interval 

(9*-cI (9*)-1/2,9*+ cI (9*)-1/2) can be approximated by I (0*), where c is, for 

instance, equal to 2. 0. Because in that case (10) would simplify to: 

P ,a (x) <8' 1 e·> r: �[r ,a•> 112 ,01-e•> J . 

And this means exactly that o2 (8 (X) I a•) = 1/I (8•) . In the example of Table 1 

I (0) certainly cannot be approximated by I (0*) in the indicated interval, which 

explains the deviation from the asymptotic property. 

With a finite test 0', in general, is not located exactly at the midpoint 

of the interval [8r,8r,), where r is the largest possible score r with a ML 

estimator Or smaller than or equal to 8 1 , and r' the smallest possible score 

larger than r. The position of 0 'in [Or, Or,) , has a sizeable influence on the 

probability of misclassification in the neighborhood of 0'. Therefore, the 

correction for discreteness 9 11 = [8 (:r) +8 (r 1) ]/2 will be used, where 0 11 will be 

substituted for 0' in (10), 

As an example, consider the test in Table 1, and suppose that 0' = -0. 25, or, 

indeed, any other value between -1.0 and o.o. The largest r with a ML estimator 

smaller than 0' is 8, and the smallest score larger than 8 is 16. Therefore, 

8 11 = -0.5. 
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Properties of the Approximation With Formula (10) 

This section begins with a theoretical comparison of the probabilities of 

misclassification, as given by (10) , for a test with constant information and a 

test with a single peaked information function, called a unimodal test. The 

result will be proved that, according to (10) the probability of 

misclassification for an unimodal test may be smaller than for a test with 

constant information as high as the maximum information of the unimodal test. 

The section ends with an example to illustrate this result. 

Without loss of generality a unimodal test can be represented by one item 

with parameter� = �11 = 0.0, and a =  a1 = 1. The number of identical items in 

the unimodal test is irrelevant for the derivation of the result, therefore, we 

may just as well take one item. The constant information test can be 

represented just by an information function with constant value 0. 25. Because 

the unimodal test has its maximum information at o.o, the classification edge 

is also chosen at that value. 

Misclassification results when a person with latent variable 8>0. 0 receives 

an estimate �r S o.o, or vice versa. Denote the two probability functions of 

misclassification by the constant test with P
0

(8) and with the unimodal test by 

P8 (8) . The statement 'P8 (8) < P0 (8) for 8>0. 0' is, using (10) , identical with: 

0. 5 - E
8 

(X I 6) 

l 
< Jr8

(8) 

�[Jo. 25 d8] 

0. 25 2 

<P(-E
5 (X l8) - 0.5

) < �(-!) 
✓ Is (8) 2 

where the subscript s with E and I again indicate that the unimodal test is 

meant. Because the normal distribution function� is strictly monotone 

increasing this is equivalent to: 

E (X I 6) - 0. 5 
> 

e 

2 
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Using the simplification of Formula 1 for the Rasch Model this can also be 

written as: 

exp (8) - 0.5 (1+exp (8)) > 8 
✓ <exp(8)) 2 

exp(¾) - exp(-¾) > 8. 

--

At 8 = o.o both expressions on either side are equal. Therefore, because 

8 > o.o, if the derivatives of both sides satisfy the inequality the result is 

proved. Differentiation of either side gives: 

½ { exp(¾) + exp(-¾) } > 1 - exp (0) , 

which is true because of the convexity of the exponential function. 

So we proved that, based on approximation (10) of the conditional 

distribution of �r , that 

(11) 

To test (11) against the exact distribution, an example is constructed for 

some illustrative calculations. In this example three measures of accuracy of a 

test with approximately constant information in a relevant interval on the 

latent trait are compared with those of two other tests. One test with a single 

peak, already called a unimodal test, and the other test with a doubly peaked 

information function, called a bimodal test. In all three cases the maximum 

information is identical. The three measures of accuracy are the exact 

probability of misclassification for these tests and the approximations of this 

probability as given by (10), with and without correction for continuity. 

Because the exact distributions have to be calculated, it is not 

sufficient to specify the tests exclusively by their information functions, the 

underlying item parameters have to be specified as well. 

For the construction of the tests some simplifications can be introduced 

to better highlight the essentials. Because scaling is arbitrary and variation 

in discrimination indices is not relevant for the subject of investigation the 
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value of the discrimination indices is taken to be one. The same applies to the 

number of parameters per item. Therefore, the examples can be restricted to the 

Rasch model. 

Let the bimodal test contain two sets of k = 10 items. All items within one 

set have the same parameter. Without loss of generality denote these two 

parameters by� and -�. Moreover, let this test have a minimum information 

value of 0.1 at the midpoint 8 = o.o between the two item parameters, 

approximately the local minimum of the information function at 8 = o in the 

example of Table 1. This minimum information value is obtained if� fulfills: 

(k - 10) , ( 12) 

where I ( 0 ; TI) denotes the information at 8 = O of an item with parameter �. 

Let c = O. l/2k then it is easy to see that for the Rasch model the solution 

to (12) is contained in the following equation: 

c exp ( 11 ) 2 + ( 2 c -1) exp ( 11 ) + c = o , 

which means that: 

(1-2c) ± (1-4c) 1h 
2c 

Solving (13) it is found that�• = ± 5. 288. Therefore, two sets of 10 item 

parameters at + 5.288 and -5. 288, resp. have an information value of 0.1 at 

8 = o.o. Notice that I( 5. 288) = 2.5. 

(13) 

Next, the maximum of the unimodal test must be equated to the maximum of the 

bimodal test. In this case one of the two sets of the bimodal test will 

suffice. The information of the set with item parameter�• at the parameter 

value of the other set with item parameter -�• is negligible. Therefore, the 

maximum information of one of the two item sets of the bimodal test almost 

equals the maximum information of the complete bimodal test. 

The problem of constructing a test with approximately constant information 

is relatively simply realized by selecting enough uniformly distributed items 

in a wide enough interval of interest. It turns out that a test of 60 items 
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uniformly distributed in [-11.8,11.8] yields an information function that is 

approximately constant and equal to the maximum information of the peaked tests 

in the interval [-6,6]. However, for purposes of meaningful comparison the 

highest e
r below or equal to the classification edge for all tests are made 

equal to -5. 2280. This is the closest the three 8 11 (for the correction for 

continuity) of the tests can get. The three next higher e
r , of the unimodal the 

bimodal and constant test after this equalizing correction are -4. 8825, -4. 8825 

and -4.8876, reap. Consequently 8 11 of the constant information test is somewhat 

closer to the classification edge than the other two. 

Now that the three tests for the example are constructed, the 

probabilities of misclassification with classification edge at -5.2880 and the 

two approximations of it can be investigated in a relevant part of the interval 

[-5.288,5.288] . 

Table 2 shows the results. It follows from these results that property 

(11), based on approximation (10), is only partially reflected in the exact 

misclassification probabilities. From a more detailed extension of Table 2 it 

can be read that the better performance of the unimodal test holds for 

misclassification probabilities greater than 0.20. For lower probabilities of 

misclassification, that is at greater distances from 8 1 the constant 

information test performs better than the peaked test, contrary to (11). The 

maximum difference 0.00456 between the two probabilities is obtained at 

8 = -3.95 where the misclassification probabilities for the constant and the 

unimodal tests are 0. 03350 and 0.03806 resp. Similar results are found with 

larger numbers of items. Therefore, this finding cannot be attributed to the 

arbitrary numbers of items in this example. Neither can the better performance 

of the peaked tests in the neighborhood of 8' be attributed to a tiny 

difference in the information functions, because the information of the 

constant test was taken slightly higher in the investigated interval than the 

maximum of the peaked tests. rt follows that (10) has to be used with some 

caution in comparing different tests with such very different information 

functions. However, where the result no longer holds, we deal with small 

probabilities. 

14 



TABLE 2 

Probabilities of misclassification for 3 tests: 
Exact Exact probability of misclassification ate* 
Apprc Approximation of probability of misclassification ate* with 

formula 10 and correction for continuity 
Appr Approximation of probability of misclassification ate* with 

formula 10 without correction for continuity 

Constant Info Bimodal Unimodal 

e* Exact ApprC Appr Exact ApprC Appr Exact ApprC Appr 

-5.29 0.626 0.624 0.500 0.622 0.624 0.500 0. 622 0.624 0.500 

-4.94 0.403 0. 405 0.289 0. 399 0. 405 0.288 0.399 0. 405 0. 288 

-4.58 0.209 0. 212 0.133 0.208 0.211 0.128 0.208 0.211 0. 128 

-3.53 0.006 0.007 0.003 0. 009 0. 003 0.001 0.009 0.003 0. 001 

-2.12 0.000 0.000 0.000 0.000 0.000 0. 000 0.000 0.000 0.000 

From the above discussion and Table 2 there emerge two reassuring 

conclusions: First, Apprc approaches the exact probabilities very close. 

Second, given the first conclusion and the approximate result (11) it follows 

that the probabilities of misclassification for the peaked tests will very 

likely not be appreciably larger than those of the constant information test. 

In this example they differ only negligibly from those of the constant test. We 

may conclude that the true probabilities of misclassification are in fact 

comparable. The differences in misclassification probabilities between the two 

types of tests grow even smaller for larger numbers of items. 

Conclusion 

From (10) and the above analysis it may be concluded that in specifying an 

information function for a test, that classifies students in a few ability 

levels, it is not necessary to demand that it is bounded from below at a 

specified value everywhere in the interval of interest. It is important, 

though, to indicate explicitly the edges that separate the levels in which the 

latent trait is classified, and to specify the minimum required information at 

these edges. This means that the current practice of specifying an information 

function has to be changed. Presently, the test constructor is asked to specify 
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the information at a 0-value that is considered representative for a class, 

instead of the information at the edge between classes. The evaluation of the 

effect of a certain specification can best be made by inspecting the 

conditional score distributions for a tentative test constructed according to 

these specifications at several values of e. However, this procedure may be too 

indirect, and, therefore, inconvenient. The above analysis, however, implies a 

reassuring message that if the information of a test between edges would 

decrease, this does not deteriorate the classification qualities of this test 

relative to a test with constant information between edges. 
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