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1 Introduction 

The algebra to derive unbiased estimates of variance components in balanced 
designs is easy and straightforward. However, once one comes to unbalanced 
designs, things suddenly get more complicated, and often recourse has to be 
made to quite sophisticated software to get reasonable results. 

The purpose of this report is to derive some unbiased estimators of the vari
ance components for a two-way table or a three-way table, with one observation 
per cell as is usual in generalizability theory, but where some of the observa
tions are missing. It will be assumed throughout that missing observations are 
missing completely at random. Furthermore, it will be assumed that the data 
are collected to produce a complete design, so that it is reasonable to expect 
that the missing values are incidental and that their number is not exorbitantly 
high. In the simulation studies therefore, the highest percentage of empty cells 
will be set to 16%. 

In the next section a rather detailed derivation will be given for a two-way 
table. The subsequent section will give the results for a three-way table. In 
Section 4, some examples will be given which compare the present estimators 
with the REML estimators provided by BMDP3V. 

2 Two-way tables 

The basic observations consist of a rectangular table with I rows and J columns, 
with in each cell a single observation denoted by Y;1 . The model for the obser
vations is 

(1) 

where µ is a constant and the other terms are considered as random variables 
with finite variance and expectation zero, and which are all mutually indepen
dent. Notice that the residual€,; is the sum of an interaction term and an error, 
which are confounded since we only have one observation per cell. 

If we have an observation in each cell, the estimation of the variance com
ponents is easy (see, e.g., Veldhuijzen, Goldebeld & Sanders, 1993). If for a 
number of cells in the table, the observation is missing, the design becomes 
unbalanced and the estimation is no longer simple. We will treat this case by 
adding a I x J matrix U ( with elements u;1), defined as 

u·. = { 1 if there is an observation in eel (i, j), 
'1 0 otherwise. 

In case Uij = 0, the value of Y;1 is arbitrary. In the complete case, all entries of 
U equal one. 
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We will use the following notation: 

mi L Uij, 

ni LUij 

If we denote averages, we will always refer to weighted averages where the 
weights are contained in the matrix U. For averages we will use the dot-notation: 

y; ,. 

Y. 

1 - "' Uij Yij , m· � 
' j 

We can always write: 

(2) 

In the complete case, the total sum of squares can be written as a sum of three 
sums of squares: 

SStot = SSrow + SScol + SSres, (4) 

but with the definitions (5) through (8) below, equality (4) is not valid any more 
in unbalanced designs. In the general case ( using the weights Uij), the four sums 
of squares are defined as 

SStot 

SSrow 

SScol 

SSres 

L L Uij (Yij - Y. .)2 ' 

Lm·(Y: -Y )2 
t t, .. ' 

L n·(Y·-Y)2 
J ,J " ' 

L L u .. (y;. - y; - y. + y )2 . 
'J 'J ,. .J " 
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(5) 

(6) 

(7) 

(8) 



and simple algebraic manipulations lead to the following equations: 

SStot = 

SSrow 

SScol 

SSres 

LLUijYJ-NY,�, 
j 

LmiY/- NY,�, 

L njY,J -NY,�, 
j 

LLuijY;J - LmiY;� - LnjY,J -NY,� 
j 

+2°"°"u· Y: Y�� iJ ,. ·J 
j 

j 

(9) 

(10) 

(11) 

(12) 

Notice that (12) defies simplification in the general case of an unbalanced design. 
Using p to denote one of the elements of { tot, row, col, res }, and using 

model (1), it is easily shown that 

(13) 

Equating any three of the four empirical SS to their expected value as given 
in (13) yields a system of three linear equations, the solution of which is an 
unbiased estimator of the three variances. Therefore the problems which are to 
be solved are: 

1. Find the coefficients a
p

, b
p 

and Cp (p E { tot, row, col, res} ); 

2. If one forms a system· of four equations in three unknowns, either this 
system will be consistent or it will not be consistent. If the system is 
consistent, any three equations can be used to solve for the parameters, 
and the results will be unique. If the system is not consistent, there exist 
four different estimators, and the question arises which one to choose. 

These problems will be treated in the next two subsections. 

2.1 The coefficients ap, b
P 

and Cp 

A straightforward way to derive expected sums of squares is to expand the 
squares in (5) through (8) and to take expectations of each term. We demon
strate the technique by deriving the �:xpected value of I:i 

I:
j 

Uij �]. First, 
notice that ( 1) gives 

Y2 2 {32 2 E 
ij = a; + j + t:;j + o (14) 

where E0 is a generic symbol to denote a sum of terms where each term is 
a constant or contains a factor which is a product of non-identical random 
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variables, which, due to the assumption of independence, has expectation zero. 
Next we multiply by uij and take sums : 

j j i 

Since the variables Uij, or their sums mi and nj, are independent of the variables 
a, (3 and €, it holds, for example, that 

(16) 

At present we will leave the expected value of the uirvariables and their sums 
as they are (without mentioning explicitly the expected value operator), and 
since E(a;) = er�, we have that 

E(L L Uij ¥;;) = N er! + N ui + N er;. 
i 

(17) 

Following the same way of reasoning we find, after some tedious algebra, that 

and 

E(L niY:;) =Ju!+ Neri+ Ju;, 
i 

Notice that the last term in (21) defies simplification. 
Using (17) through (21), we find that 
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(18) 

(19) 

(20) 

(22) 

(23) 



E(SSres ) 

Notice that in a complete design, it holds that 

m; = J and nj = I 

(24) 

(25) 

whence it is easy to check that the formulae (22) through (25) also hold for the 
complete case. 

We will end this section with some remarks on the conditions where the 
foregoing results are valid. The key. assumption is already given by an example 
in equation (16), but generally it means that the model parameters (a, {3 and 
c) and the design variables u must be independently distributed. This allows 
us to write, for example, 

From this independence, we can quite accurately deduce when the results are 
valid in any practical situation. We give three examples. In the first example 
some observations are missing incidentally, but the design was planned as a 
complete design. If it is reasonable to assume that the mechanism that caused 
the not observed cells is totally unrelated to the model parameters, the foregoing 
results are valid. Notice that if the observations would be repeated, the value of 
the design variables u probably will not be identical across replications. The sec
ond example is a planned incomplete design, where two booklets of items (with 
some or no overlap) are administered to two groups of students. If the items 
are assigned randomly to the booklets and the students are assigned randomly 
to the groups, the results are valid. If on the contrary - and this is the third 
example- items are assigned to the booklets on the basis of difficulty (making 
an easy and a hard booklet) or students are allocated to the groups on the basis 
of some estimate of their ability, the results are no longer valid. This is easy 
to understand. Suppose the booklets have no overlap. The /Jrparameter in (1) 
is an index for the easiness of item j. If one constructs rather homogeneous 
booklets, the estimate o'µ will estimate the within booklet variance which will 
understimate the variance of the itemparameters. 

A related topic concerns the precise meaning of the expected value operator 
E(.) in (22) through (25). Since in the right hand sides of these equations the 
variables u appear as they have been observed in the sample; all the expected 
values are only taken with Fespect to the model parameters and conditional 
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on the design variables as observed. With a planned incomplete design the 
distribution of the design variables is degenerate , i.e. the u have no variance by 
definition. With incidental missings, the scope of the research can be different. 
The narrow scope tries to find the variance of the effects and the residual given 
that the design variables take values as in a particular case, what is usually what 
one finds after the data collection. The broad scope supposes a distribu tion of 
the u-variables , and the observed value of these variables in a particular case is 
considered as a random draw from this distribution. For example, one might ask 
for the expected sum of squares if for each cell (independently) the probability 
of not having an observation equals some number 1r. For such an approach 
the formulae (22) through (25) are not appropriate , but should be replaced by 
similar formulae where all functions of the u variables (like I::i I::j Uij /(minj) 
in (25)) are replaced by their expected values in the distribution of u. Such an 
approach allows one to generalize over a whole population of design matrices, 
but the expected values of the design variables presuppose a model, and their 
computation will in general not be easy. 

2.2 Choice of the estimator 

The results of t he derivations are given by the equations (22) through (25). 
Equating these expected values wi th the observed sums of squares yields a sys
tem of four linear equations in three u nknowns. A simple example , with an 
arbitrary matrix of observations and a few missing values learns th at this sys
tem is in  general not consistent , i.e. , there do  not exist in general thiee variance 
components such that the observed sums of sq uares all equal their expected 
values. 

Of c ourse one could use any three of the aforementioned equations and eq uate 
them to the corresponding observed sums of squares, and the (unique) solution 
is a consistent and unbiased estimator of the variance components. (Of course,  
there may exist designs where there is no unique solu tion, because the matrix 
of the equation system is singular, but such a case is not considered fur ther , 
because it is not to be expected to occur in practical cases where the number 
of missing values is low in comparison to the number of cells.) 

To get an idea on the possible differences, two small simulation stud ies were 
set up with I = 40 and J = 15. The first study was concerned with continuous 
variables, while the second study used binary responses. 

2.2. 1 Study 1 

The true variance components are displayed in Table 1.  

Table 1 :  true variances in study 1 

cr! cri cr� 
1 0 .49 3 
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Considering the row elements as persons and the column elements as tes t 
items , the values in  Table 1 correspond to a tes t of 15 items with a Cronbach's 
alpha of 5/6 = 0.83, which is quite realis tic. To cons truct an incomplete table , 
we proceeded in two s teps. Firs t for each row i a row effect was drawn from 
a normal distribution with mean zero and variance a� , and similarly for each 
column j a col umn effect /3; was drawn  from N(0, cri). For eaclt cell (i, j) of the 
table the observation was defined as a:; + /3; + e;; , with EiJ independently drawn 
from N(O, er;) .  Second, for each cell independently a biased coin with success 
probability 7f was tossed , and on success the cell was designated as non-observed . 

In the s tudy, the value of 7f took 5 different values : 0, 0.02, 0.04, 0 .08 
and 0 . 16, w here each value represents a condition .  Within each condition 1000 
tables were created and analyzed. For each table, the variance components were 
es timated in  four different ways, by dropping each time one of the equations 
(22) through (25). In each condition the average estimate and the standard 
deviation of the estimates was computed across replications. The results can be 
summarized as follows : 

• For the condition 7f = 0, the four es timation procedures give identical 
results (because of (4)). Means and standard deviations across 1000 repli
cations are given in  Table 2. 

Table 2. Results for the complete condition in study 1 

(12 
"' 

mean 1.001 
SD 0.272 

0'2 
f3 

0.492 
0.216 

2.993 
0.183 

The row SD can be considered as an es timate of the standard errors. 

• Within each condition with incomplete data the mean and the SD across 
es timation methods did show a very slight variation in  the order of magni
tude of 0.001, w hich may be considered negligible w hen compared to the 
s tandard error of the es timates. 

• Within  each condition the correlations (across replications) between the 
estimates for each variance component were very high. The smalles t cor
relation found was 0.987 

• The means of the estimates in the incomplete conditions were as close to 
the true values as in the complete case, showing clearly that the estimators 
are u nbiased . 

• The SD for the three estimators and the five conditions are shown in 
Table 3.Althoug h  there is  certainly a tendency for the SDs to increase 
with increasing values of 7f, the main  result is that the increase is very 
small : even in the case with 16% of empty cells , the standard error is only 
slightly larger than  in the complete case. 
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Table 3. SD across conditions in s tudy 1 

.00 

.02 
.04 
.08 
.16 

0.272 
0.271 
0.275 
0 .278 
0.286 

0.216 
0.207 
0.221 
0.224 
0.221 

0.183 
0.183 
0.178 
0.191 
0.203 

In summary we can choose freely one of the four methods of estimation, 
since they all give unbiased es timates with the same accuracy, and the es timates 
themselves correlate very highly. Moreover , a very comforting finding is that the 
accuracy of the es timators decreases only very slowly with increasing number of 
empty cells. 

2.2.2 Study 2 

The setup of this s tudy is similar to that of s tudy 1. The only difference is the 
definition of the response variable. To make things clear , the two definitions are 
displayed together : 

s tudy 1:  

s tudy 2: y; . = { 1 if ai + Cij > /3j , 
'3 0 otherwise. 

Of course, by using this discretization, it is not straightforward to predict the 
true val ues of the variance components. But for comparisons across conditions 
this is not very important, since we know that all estimators used are unbiased .  

The res ults are s ummarized as follows :  

• For each of the 1000 replications with complete tables, Cronbach's alpha 
was computed. The average alpha is 0.72; the standard deviation was 
0.07. 

• Means and standard deviations across 1000 replications for the complete 
tables are given in Table 4. 

Table 4. Results ( x 10) for the complete condition in study 2 

mean 
SD 

a2 Cl: 

0.358 
0.094 

0.174 
0.077 

a2 
e 

1 .967 
0.102 

• As in study 1, there was almost no variation across estimation meth
ods in means and standard deviations, and the correlations between es
timates from different estimation methods were very close to 1 (lowest 
value: 0.987). 
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• The SDs for the three estima ors and the five conditions are s how n in 
Table 5. As in study 1, there is an increase in the standard errors with 
increas ing number of miss ing observations, but again, the increase is very 
slow 

Table 5. SD ( x 10) across conditions in s tudy 2 

7r 0'"2 
Ct 

(72 
{}_ 

(72 
' 

.00 0.094 0.077 0. 102 
.02 0.096 0.079 0. 106 
.04 0.098 0.078 0. 105 
.08 0. 103 0.081 0. 106 
. 16 0. 106 0.080 0. 1 15 

In summary we can draw essentially the same conclusions from both s tudies : 
the estimation method does not matter very much. All four estimation methods 
y ield unbiased, very highly correlated estimates which have much the same 
accuracy. 

3 Three-way tables 

3.1  The results 

For three-way tables, with I rows, J columns and K layers, a s im ilar approach 
as in the two-way case can b e  used. The model is 

where Gij k is the sum of the highest-order interaction and the measurement 
error. There are seven varia nce components : three for the main effects, three 
for the first order interactions and one for the residual . 

To deriv e the expected values of the sums of squares, we need a sl ightly more 
complicated notation than w ith the two-way design.  The design variables u now 
have three indices, a nd we need univariate as well as bivariate totals. Therefore 
we define 

and 

(27) 

(mn)ij = L Uij k ,  (ms) ;k = L Uij k ,  (ns)jk = L Uij k •  (28) 
k j 

As before N denotes the total number of observations. 
In the case of a three-way table, there are seven var ianc e  components, while 

there are eight sums of squares, w ith the result that any seven sums of squares 
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can be equated to their expected values . In the simulation studies with two-way 
tables it was found , however, that the different estimation equations g ave very 
similar results. With three-way tables , the derivation of the expected residual 
sum of squares gives rise to quite cumbersome expressions, which will be omitted 
from the present report. In analogy with the equations (9) through (12) , it is 
easily shown that 

SStot 

SSrow 

SScol 

SSrow,col 

L L L UijkY;]k - NY.�., 
j k 

L mi Y;2_ - NY.�., 

L nj Y.;. - NY.�., 
j 

j 

+2 L L(mn)iJY; . .  YJ. 
i j 

j 

(29) 

(30) 

(31) 

where it is clear that the expressions involving layers can be constructed easily 
by appropriate changes of subscripts. To derive the expected values, it showed 
useful to introduce the following generic quantities : 

A - Ei m� 

°' 
- N I 

� .  � - (mn)t 
B 

_ 01 0:1 lJ 
oc/J - N ' 
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(33) 

(34) 

(35) 

(36) 

(37) 

(38) 



and 

(39) 

The above definitions are generic in  the following sense: the subscript a: in 
the lef hand side corresponds to the subscri pt i and the frequencies m in t he 
right hand side; the subscri pt /3 corresponds to j and n, while t he subscript 
k and the frequency s do not have a corresponding subscript in  the left hand 
symbol, because they refer to the remaining dimension of the table . From this 
convention, it should be clear that, for example, 

Notice , furthermore , that some of the above quantities are symmetric , and others 
are not. For example ,  it is easy to check that 

and that t he same relation holds for Do,13, Ec,13 and Fa/3 , but not for Ca/3 and 
Ga/3 · 

Using the equations (29) to (32) and the generic defini tions (33) through 
(39), t he following table of coefficients c an be constructed (Table 6). T he value 
in a cell is the coefficient of the column variance component in the expected 
v alue of t he row. 

Table 6. Coefficients of v ariance components of 11 expected v alues 

Expected v alue 
E (Li Lj Lk UijkY;�k) 
E NY2 

. . . 
E L- miY t • . .  

E (L - n1-Y2 

J .J .  
E L Sk ��k 
E Li Lj

(mn);jY;�. 
E (Li Lk (ms)ikY;�k 

E Lj Lk (ns)jk�Jk 

E Li Lj (mn);jXi . . Yj. 
E (L; Lk (ms)ikXi . .Y .k) 
E (Lj Lk (ns)jkYj.Y.k] 

0"2 °' 
N 

Aa 

N 

C13a 

C--,o: 
N 

N 

JK 

C13a 

C-ya 

F13-y 

� cr2 
l 

N N 

A/3 A., 
Ca/3 c°''Y 
N C13-y 

C-r N 

N IJ 

IK N 

N N 

Caf3 Fa/3 
Foq Ca"r 
C-y13 C13-y 
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2 2 2 0"2 aafl. 
aa1. a fJ.1. 

N N N N 

Ba/3 Ba"r B.1h 
CafJ C°'"r I I 

C13a J C13-y J 

K C-r°' C fJ K 

N IJ IJ IJ 

IK N IK IK 

JK JK N JK 

E°'/3 Ga/3 G13a Da/3 
G°'-Y Ea-y G-ya Da-y 

G13-y G-y/3 E13-y D13-y 



Table 6 is the main result, because the expected values of the seven sums of 
squares needed (total, three main effects and three first order i nteractions), are 
easily found as linear combinations of the rows of Table 6. 

If the design is complete, Table 6 reduces to Table 7 

Table 7 .  Coefficients of variance components of 11 expected values (complete 

Expected value 
E ( Ei Ej Ek Uijky;;k) 
E 

fNY:�.} E I;; miY?) 
E (E · n3

·Y2 

J ,J , 
E I; , sk Y�. 

E I:;i I;j (mn)ijY;} 
E (Ei Ek (ms) ikY;�k 
E Ej Ek(ns)jk�;k 

E Ei I:j (mn)ij Yi . . Yj. 
E (I;

i Ek (ms)ik°1'i . .  Y .k)  
E (Ej I;k (ns)jkYj. Y.k  J 

3.2 Study 3 

a2 
cc 

N 
JK 

N 

JK 

JK 

N 
N 
JK 

JK 

JK 

JK 

design) 

a2 
fJ 

., (r 1 
N N 
IK IJ 

IK IJ 

N IJ 

IK N 
N IJ 

IK N 
N N 

IK IJ 

IK IJ 

IK IJ 

o-!13 
2 2 a2 (J' °'1 (Tfh 

N N N N 
K J I 1 
IK IJ I I 

JK J IJ J 

K JK IK K 

N IJ IJ IJ 

IK N IK IK 

JK JK N JK 

K J I 1 
K J I 1 
K J I 1 

A nalogously to study 1, a simulation study was carried out with continuous 
response variables in a three way design. I n  Table 8 the true values of the 
variance components are displayed. 

Table 8: true variances in study 3 

a2 a2 a2 2 2 2 a2 
Ck {}, 1 aa{}, a°'1 a/31 C 

1 0.49 0.36 0.25 0.16 0.09 3 

As in s tudies 1 and 2, there are five conditions with a probabil ity of  non
observation of 0%, 2%, 4%, 8% and 16% respectively ,  and in each condition 4000 
data sets with I = 40 rows , J = 15 colum ns and K = 10 layers were cons tructed 
from which the variance components are estimated using the formulae derived 
in the preceding section. otice that  only one estimation procedure was a pplied 
since the expected value of  the res idual sum of squares was not derived. 

The results are not substantially d ifferent from the ones in s tudy 1 .  

• The average estimates and the s tandard deviations for tlie comple te design 
( 7T' = 0) are displayed in Table 9. Notice that the es timates of the interac
tion components have a much smaller standard error than the es timates of 
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the components of the main effects , which demonstrates the paradoxical 
situation that the components which are usually of the greatest interest, 
the main effects, are more d iffic ult to estima te than the components of 
lesser interest, the interac tions . Searle (1971 1 pp. 415-417) gives expres
sions for the standard errors of the variance component estimates. These 
val ues a re computed for the present s tudy and given in the row labeled 
SE. If the effects are normally distributed, the e>..-pressions given by Searle 
are exact, and as can be seen from Table 9, the empirical S Ds (computed 
on a sample of 4000 tables) are indeed in v ery c lose correspondence to the 
theoret ical values. 

Table 9: summary of results for the complete case in study 3 

(T2 0'2 (T2 2 2 2 � "' f!. ::r (Ta.I)_ 
0'°'1 (T {}_'j_ 

mean .9955 .4895 .3602 .2498 . 1 607 .0898 3.0007 
S D  .2399 .1940 .1806 .0341 .0272 .0206 .0608 
SE .2384 .1938 .1768 .0338 .0275 .0208 .0605 

• For the other condit ions, the mean estimates were v irtually equal to the 
means in the complete conditions, and the st andard deviations showed a 
smal l  increase with increasing percentage of empty cells. The tables are 
v ery similar to the Tables 3 and 4, and wil l  not be reproduced here. 

In summary we can say that the results of study 3 are much the same as the 
results of study 1: the moment est imator is unbiased, and its standard error is 
of the same order as the standard error in the complete case. 

3.3 Study 4 

Although the method presented abov e is easy to use in prac tical settings, two 
theoretical issues should be discussed . The first concerns the efficiency of the 
method, and the second has to do with the estimation of the standard er rors 
in the case of highly discrete observations. We comment on these problems in 
turn.  

As can be seen from the simulation studies, and especially from study 3, the 
standard errors (as estima ted from an empirical distribution) are quite large, 
especially for the main effects . Of course, the number of observations in a 
s ingle table in the stud ies is not ov erwhelmingly large, but in the context of 
generalizabil ity theory, wi th one facet being items and the other raters, the 
numbers used in the simulation studies will in most contexts be larger than is 
feasible in any practical application. Therefore, i t  might b e  useful to try other 
estimation methods which may b e  more efficient than the proposed moment 
method. Serious candidates of course a re estimation methods which are based on 
maximizing some likelihood function. A standard statistical package like BMDP 
( 1992) a llows for estima tion with maximum likel ihood (ML) and restricted ML 
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(REML) of variance components in unbalanced designs. Therefore ,  we planned 
a study to compare our estimation method with these two ML-methods . 

But this brings us immediately to the second problem. To use ML one needs 
a model for the distribution of the observations. In the st andard packages this 
model is always the normal distribution, i.e. all effects are normally distributed , 
but in many applications the observations are discrete, or even binary, and it is 
largely unknown how the use of a model for continuous observations will perform 
with discrete data. 

To shed light on these two problems, 1000 40 x 15 t ables were generated with 
binary data  and with a missing probability of 16%, i.e., this corresponds to the 
fifth condition of study 2: the same values of the variance components were used, 
and the same method of dichotomization. Each one of the 1000 tab les were used 
to estimate the variance components of the two main effects and the residual 
with three estimation methods : the momen method proposed in this report , 
the ML and the REML estimation method implemented in BMDP3V. (Many 
thanks to Nie ls Veldhuijzen for runn ing 2000 Bl\IDP jobs , and for collec ting the 
six numbers I needed from each the 2000 abundant BMDP output files.) The 
results of the study can be summarized as follows: 

• For each of the three variance components, the correlations were computed 
between the three estimation methods . The minimum correlation found 
w as 0.994, which shows that the three methods give virtually the same 
estimates, a part from possibly a scale factor or a shift . 

• I n  Table 10 the average estimates are given. The moment method and 
REML give the same results, while the ML method gives somewhat lower 
v alues for the main  effects, possibly pointing to a s light bias, which is not 
import ant for practical purposes. 

Table 10. mean estimates ( x 10) in study 4 

moment 
REML 

ML 

.3532 

.3533 
.3459 

a2 
13 

.1761 

.1761 
. 1655 

1 .9717 
1.9718 
1.9726 

• Some results concerning st andard errors are displayed in Table 11. The 
standard deviations from the moment method were equal to the ones from 
the REML procedure. It can be seen from the tab le that the ML-method is 
more efficient than the REML and the moment method i n  estimating the 
main  effects . Of course, when estimating variance components i n  practice, 
there is litt le possibility of doing replications with one (incomplete) data  
set. (It is even not clear how one could apply the boots trap met hod. ) .  
Bu t an  est imate of t he (asymptotic) standard error c an be derived on  
theoretical gro unds , and the program BMDP3V gives such an estimate 
for ML as well as for REML. In the present study we took the square 
root of the mean squared (estimated) standard errors as an est imate of 
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the asymptotic standard error. These values are displayed in Table 11 in 
the two rows labeled SE. Although asymptotic standard errors are usually 
smaller than the real standard errors in finite samples, here we see the 
opposite relation: the theoretical standard errors (SE) are systematically 
larger than the empirical ones (estimated by SD), and the reason for this 
is undoubtedly the fact that normal theory has been applied to binary 
data. From the table it is seen that using normal theory overestimates the 
error variances with about 30% (see the rows labeled SE2 / SD2) .  

Table 11 .  SD and SE of  the estimates (x lO) in  study 4 

REML-SD 
REML-SE 
SE2/SD2 

1vIL-SD 
ML-SE 

SE2/SD2 

4 Conclusion 

. 1045 

. 1185 
1 .29 

. 1022 

. 1 162 
1 .29 

.0832 

.0943 
1 .28 

.0782 

.0884 
1 .28 

. 1 149 

. 1317 
1 .31 

. 1 152 

. 1375 
1 .42 

In the present report formulae have been derived to estimate variance compo
nents in a two-way design and a three-way design with (when complete) one 
observation per cell, and where observations can be missing. It is assumed that 
the distribution of the missing values is independent of the distribution of the 
model parameters. 

When a design is incomplete, it becomes unbalanced, and in unbalanced 
designs the property that the total sum of squares can nicely be decomposed 
as a sum of three (in a two way design) or seven (in a three-way design) sums 
of squares is lost. This is clearly demonstrated in Table 7, where the last .three 
rows are equal to the second row in a complete design but this property is lost 
in an unbalanced design. Because of this, the moment estimators are no longer 
uniquely defined. In fact, Table 6 contains 1 1  rows, and any seven (linearly 
independent) rows can be used to estimate the seven variance components, and 
any choice gives an unbiased estimator, although the standard errors may be 
quite different. And the expected values used in Table 6 are by no means 
exhaustive. We could, for example, have derived also the expected value of 
Z::i Ei Z::k Uijkl'ij. l'i.k which is also a linear combination of the seven variance 
components. 

The choice of particular linear combinations was inspired by two considera
tions. First, it was the purpose to choose the same sums of squares which are 
used in the classical analyses with balanced designs, and second, the choice was 
partially inspired by the wish to avoid lots of tedious algebraic derivations. In 
particular, the expected value of the residual SS in the three-way design was 
not derived. 
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In the first two simulation studies, it was investigated whether any choice of 
three SS from the set {SSrow , SScol , SSre5 , SS,0,}  would have an important 
influence on the resulting estimates. It appeared that this was not the case. The 
four methods gave virtually the same means and standard deviations across 1000 
replications and the correlations between the estimates w1der the fom estimation 
methods were all very close to one. 

This led us to the conclusion not to investigate the effect of different esti
mation methods in the case of a three-way design, but to use only the total SS, 
the SS of the main effects and the SS of the first order interactions. The main 
result is a table of coefficients (Table 6) of eight sums of squares and three sums 
of cross products. 

In the first three simulation studies it is clear that the estimators used are 
unbiased, and that the empirical standard errors increase with increasing num
ber of missing cells (as should be expected.) It is, however, not easy to describe 
the pattern in the increase (see the Tables 3 and 5), because the increase is not 
monotonic in all cases, suggesting that 1000 replications is not enough to have 
stable estimates of the standard deviations. 

The problem of the standard errors is quite complicated, as appeared from 
study 4 where incomplete two-way tables of binary observations with (on the 
average) 16% missing observations were analyzed with the moment method, the 
REML and the ML method. The finding that the estimates of the variance 
components correlate extremely high is comforting, but the estimation of the 
standard errors is problematic. The estimates of the asymptotic error variances 
for ML and REML appear to be about 30% larger than the empirical estimates, 
an effect which is ascribed to the fact that normal theory is applied to binary 
data. For the moment method this causes a kind of a dilemma. The results de
rived by Searle also use normal theory, especially the fact that, if X ~ N(O, u2), 
then E(X3) = 0 and E(X4) = 3114 . Moreover, the basic model (1) cannot be 
true if the observed variables are binary and the effect variables are continuous, 
and at the same time independent. Therefore we can expect that the formulae 
developed by Searle will also be in error when applied to binary data. To check 
this we computed the standard errors using the formulae of Searle on the com
plete data of study 2 (see Table 4). The average parameter estimate was used 
as the value for the variance components, and the result of Searle's formulae, 
labeled SE were compared to the empirical SD, giving a ratio SE2 / SD2 of 1.40, 
1.20 and 1.35 for the row, column and residual components respectively. These 
results are comparable with the same ratios given by both ML procedures (see 
Table 11). 

In view of these results, it seems not to be fruitful to adapt Searle's formulae 
to unbalanced designs (which is easy in principle but involves a lot of tedious 
algebra) since they also will probably be grossly in error when applied to binary 
data. In any case, the development of these formulae is beyond the scope of the 
present report. 
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