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Abstract

First, the optimal solution to the estimation or prediction problem of individual ability
(’states’) is discussed in the framework of the State Space Model (SSM).

Next, the consequences of replacing the linear measurement model in the SSM by a non-

linear Item Response Model (IRT) are investigated.
Finally, the possibility of using estimates of latent ability in IRT as pseudo observations

in the SSM are explored.
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Introduction

The task of characterizing growth in level of attainment within an individual student is
far from easy. One reason for this is the typical unreliability of educational measures. More
structural information concerning the student, such as measurements on previous occasions
of the same or other skills and background information, could be used to reduce this
uncertainty.

As a general model the State Space Model (SSM) is chosen. The SSM consists of two
sets of linear equations: transition (or process) equations and measurement equations. It is
assumed that except for the individual abilities or ’states’ all parameters in the SSM are
known. The question is raised how best to estimate or predict individual ability in this setting.
In the second part of the paper, the linear measurement equations in the SSM are replaced
by a more proper non-linear measurement model for an educational setting, namely an Item
Response Theory (IRT) model. And again the question is raised how best to estimate or

predict individual ability in this context.

Estimating and Predicting Individual Ability in the SSM

Having formulated an SSM and estimated the structural parameters of this model, it may
be interesting to construct scales of measurements for the latent abilities or states. For
example, we might be interested in how individual ability has changed between occasions or
we might be interested in the difference in ability between two individuals. The problem in
fact is how to use the information present in individual’s observation(s) to locate him/her on
the latent dimension(s) or state(s). As Bartholomew (1987) has pointed out: " there has been
a long and controversial debate about how best to do this". We totally agree with
Bartholomew that this debate has often been obscured by talk of ’estimating’ the latent
abilities as if they were parameters in the ordinary statistical sense. Remembering that the
states in the SSM are random variables, it is often forgotten that these variables are still
random after the observations have been made. So, we have a prediction problem, not an
estimation problem.

In the remainder of this paragraph we will elaborate the optimal solution to the prediction

problem. First this will be done for the static case, and then (briefly) for the dynamic case.



For reasons of simplicity, classical test theory, as a sub-model of the SSM, is chosen as an

illustration. Results, however, are easily generalized for other SSM.

The Static Case

Consider classical test theory as a sub-model of the SSM. More specific, suppose that

the measurement equation is given by
y=n t€, (1)

where y is an observable test score, n the corresponding ’true score’ and the error terme
is distributed N(0,0) independently of y and n. Furthermore, suppose that the transition
equation is given by

n=a+{, (03]

where {~N(0,Q) and independent of €.

Or more briefly, taking equation (1) and (2) together, y and n are related by the conditional
distribution (y|n)~N(n,0) and the marginal distribution (or prior distribution) of n is
N@,Q) .

Now suppose that we are unwilling to make distributional assumptions about n or in fact
that we do not know a and Q. Can we estimate n from one single observation? If we close
our eyes for the fact that n is random and look at 7n as being fixed, the GLS estimator
would be the Best Linear Unbiased Estimator (BLUE) of n. In the case of normality, it
would also be the ML estimator. If we view the classical test theory model as a one-factor
model, this estimator is known as Bartlett’s estimator for factor scores (Lawley & Maxwell,

1971). The GLS estimator and associated error covariance in the fixed case are given by
n=y and (€)

P=6 . 4)



The advantage often claimed for this estimator is that it is conditionally unbiased,
E(M|n)=n. In other words, if we average n over all individuals whose true scores are given
by n, this average equals n. To this kind of reasoning one could object that this estimate
is not relevant for an individual without replications. Or to put it in other words, with a small
sample (n=1) the estimator n will always be biased (small sample bias). In addition we
neglected the fact that v is a random variable. If we take 7 is random, 1 as defined above
again has some optimal properties, which now must be expressed in terms of the estimation
error, 1 -7 . This estimation error has expectation zero and variance 6, equivalent to the
properties of the GLS estimator in the fixed case. It can be shown that 7 is best within the
class of linear and unconditionally unbiased estimators (extended Gauss-Markov theorem).
So there is some evidence to use the GLS estimator in the case that we do not know the mean
and the variance of 1.

How to proceed if we know the mean and the variance of n? Now the conditional
distribution m |y (or posterior) becomes of interest. Given the prior distribution of n and the
conditional distribution y|n, use of standard results from multivariate analysis or application
of Bayes’ theorem will give us the posterior distribution of n given y. As a prediction of
an individual’s n we could take the posterior mean, and the estimated true score, 7, would

then be

E(n|y)=a+Q(Q+6)"'(y-2a) . ®)

A measure of variation of the n’s can be obtained from the posterior variance,

P=Q-Q(Q-0)'Q . (6)

Remarks:

1 The estimator 1 as a result of the prediction of the random variable n from y is
unconditionally unbiased, i.e., we can see predictors as estimators of future values of
random variables.

2 Referring to the posterior variance, it is apparent that we can calculate this variance before
any data is collected! More specific, the posterior variance is a statement about the

properties of the estimator 7 based on the random vector y. If we make many estimates
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of n, using measurements y, the sample variance n -1 would be approximately equal
to the posterior variance (presuming n is known).

3 In classical test theory 7 is called Kelley’s estimator of the true score and the ratio
Q(Q +0)! is known as the test reliability (Lord & Novick, 1968).

Now lets return to the Minimum Mean Square Estimation (MMSE) or Minimum
Variance (MV) estimation. Dropping the assumption of normality, the question is now: Can
we incorporate prior information about n in the GLS estimator? To do this, we have to
express the prior information in terms of a distribution for a-n with mean zero and

variance Q (see Harvey, 1981). The next step is to construct an augmented model

Grn-(7) ™

Updating the GLS estimator gives
w*=P(Q 'a+07'y) and (8a)
P=(Q'+6H7 | (8b)

It is easy to show that the estimators 7 and n* and their associated variances are equal (use
the matrix inversion lemma). So, tackling the problem from different directions we end up
with the same results. In factor analysis, the estimates n* are known as ’regression’ factor
scores (Lawley & Maxwell, 1971).

Suppose now that we have two or more observations. In the prediction setup, the
posterior becomes the new prior and in the MMSE approach the GLS estimator is updated

to incorporate the new information. For n observations this boils down to

n
nw, =P (Q'a+6) y) and (9a)
el



P=(Q'+n6 )T, (9b)

This is in fact a recursive linear estimation scheme (Bayesian estimation). If we taken
random, in the sense that it is randomly drawn from a prior distribution and keep it fixed
before we repeatedly generate the observations in y, the influence of the prior information
will die out in the long run when n becomes large. In the limit, assuming inverses exists,
equation (9a) will converge to the mean of the observations. In the case n is also redrawn
every time an observation y is generated, in the log run, we end up, with the mean of the

prior distribution, namely a.

Dynamic Case

The above updating scheme was static in the sense that we were updating the same
random vector all the time. Now we consider the case where n changes between
measurements according to a specified statistical dynamic, i.e., a discrete random process or

time series model. The transition equation is given by

Ny =3, M, + ¢, t=0,1,2,... . (10)
The estimation procedure for n follows the same steps as compared to the static case. The
only thing we have to do is update the posterior before it becomes the new prior according

to the time series model. The equations for these predictions and associated estimation error

variances are given by

M =2t d*,, and (11a)
/

Pt+1|t=¢tPt|t¢t+Qt . (11b)

If we have m measurements, z_ 8[y,,¥,5¥2:---¥Ypnl » the following estimators for ability can be

considered:

T*,s=E(n |z;) and (12a)



", m=E(M |z ;0) for s<m . (12b)

Here w stands for the known parameters in the model. The estimates n*;; and 0¥, are

s|m
known as Kalman filtered estimates and Kalman smoothed estimates respectively. For a
thorough derivation and discussion of the Kalman filter model and equations for the estimates

see Kalman (1960), Harvey (1981), Jazwinsky (1970) or Catlin (1989).

Comment

The estimation or prediction procedure described above typically has a two-level
character. In the present case, there are two levels of sampling involved: occasions within
individuals, and individuals within the population. Especially it is worthwhile noting that the
filtering procedure optimally combines the information in both levels of sampling. Dependent
on the magnitude of the information present in the levels, weights will be accordingly
attached to the levels for extracting information. We end up with estimates which are
optimally in the sense that they minimize the MSE in the population.

As an estimate for an individual’s ability, all the estimates discussed above come into
consideration. These estimates differ in the amount of information they incorporate. So if we
want an estimate for an individual, choose the one which incorporates all the available

information. So, a smoothed estimate will be better than a filtered estimate.

IRT as a Measurement Model in the SSM

The linear measurement model in the SSM is now replaced by a more proper non-linear
measurement model for an educational setting, namely an IRT model. First, an example of
an IRT model will be given, the One Parameter Logistic Model (OPLM), and some of its
benefits will be discussed. Then, estimation of an individual’s ability in the context of the
SSM, with the OPLM as the measurement part, will be discussed. Finally, we discuss
estimates of latent ability in IRT models which could be utilized as ’pseudo’ observations in
the SSM.



Item Response Theory

An IRT model supposes that the ability or latent trait, commonly denoted by 6, is not
directly observable. An IRT model specifies a probabilistic relationship between this latent
trait and the observable responses on test items of individuals from a well defined population
of individuals. Consider, as is appropriate in this example, dichotomously scored items, and

we define the random variables X.., the response of student i (i=1,...,n) on item j

ij’
(G=1,...,k), with possible values O (item is wrong) and 1 (item is correct). The basic equation

of the IRT model we use is

exp [aj (Gi -p j) x,'j]

: (13)
1+ exp [aj (6! -p J)]

P(Xij=xij I ei,aj,ﬁj) =

In this equation B; is the difficulty parameter and a; the discrimination index of item j. The
model further assumes unidimensionality of the latent trait, which implies local independence

(given 0) of the item responses:

P(X;=x,, Xy, =%, |0,2,,B)=

P(X;=x;|0,a;,B) . P(X;=x; |8,2,B)  j#k (14)
and independence of the responses between students:

P(Xi,,':xi ,j’xi,,i:xi,j) = P(Xilj=xilj) : P(Xi,j=xi,j) i#i, . (15)

In using an IRT model as the measurement model, two major problems can be
distinguished: the first problem is the scaling (or calibration) of the total set of items which
measure the ability, whereas the second problem is the measurement of the ability of (groups
of) individuals on the established scale. In the calibration phase, the item parameters are
estimated and the validity of the model is tested on the basis of responses of students to the
items. It is decided in this phase whether there are items which do not follow the model and

must be rejected from the item pool and whether the assumptions of the model yield. The



procedure we prefer for estimating the item parameters is conditional maximum likelihood

estimation (CML). The CML procedure has several attractive features:

a item parameters can be estimated without making any assumptions about the distribution
of the latent ability;

b no need for a random sample from a population, i.e., the consistency of the item
parameter estimates is not influenced by the sampling method;

¢ item calibration in incomplete longitudinal designs is possible without complications;

d test statistics at the item level are available which have well known good statistical
properties.

With CML, the measurement problem, i.e., estimating item parameters and assessing model

fit, is separated from the structural problem, i.e., estimating latent abilities.

The application of CML, however, is restricted to the case in which there exists a sufficient

statistic §;=S(X;,,...,.Xy) for the individual parameter 6,. The model we use is the One

Parameter Logistic Model, which model was introduced and first applied on a large scale in

the Dutch National Assessment Program (Verhelst & Eggen, 1989). The model is a special

case of the Bimbaum model (Lord & Novick, 1968), from which it differs that in the model

the discriminating power of an item is not modelled as a parameter which is to be estimated

but as a hypothesized known integerkconstant. The model belongs to the exponential family,

with the weighted sum score S = Z 3;X; as the sufficient statistic for 8,, which makes it

possible to develop sound statistica{-[l)rocedures for estimating and testing the model. In the

remainder of the paper we consider the item parameters known.

Individual Ability

Suppose we have a large item bank from which we have constructed a suitable test for
each occasion t (t=1,2..T). Furthermore we have registered, for each occasion, the
(weighted) test scores, s,, for an individual drawn form some population with corresponding
latent abilities 8,. How to estimate 6,?

First, we deal with the cross-sectional case. As before, we have two sources of
information. One source of information comes from the population level, 6, is drawn from

some population with known ability distribution G,(8,) (prior), whereas the other source is



from the individual level, the observed test score s,. As an estimator of individual ability,

6’: , we once again take the mean of the posterior

[8, L(8,Is,2)G,8)d8,
[L(8,|5,0)G,(8)d6,

E(B,|s,0,A)= (16)

Here, A and ® are known parameters, and L stands for the likelihood of the IRT model.
The conditional mean, 6}, called Expected A Posteriori (EAP) estimate of ability (Bock &
Mislevy, 1982), in IRT is comparable to the estimate considered in the random case in the
linear model as discussed before.

And also for the dynamic case we use the obtained posterior to make an prediction
according to the time series model which in turn becomes the new prior to obtain filtered
estimates. And finally, as before, smoothed estimates can be obtained using a set of backward
recursions with these filtered estimates. For reasons of duplication and space we will not give
the expressions for these estimators and associated error covariances.

In summary, replacing the measurement model in the SSM by a non-linear IRT model will

not change the estimation procedures for the latent abilities much.

Pseudo Observations

EAP estimates (filtered or smoothed) for individual ability seem the right thing.
However, the use of EAP estimates gives some practical disadvantages, especially in
combination with time series models. Suppose for instance that we want to use several time
series models for an individual, or, in the cross-sectional case, suppose that one wants to
choose several priors. The evaluation of the integrals, however, involved in calculating EAP
estimates becomes rather expensive. Also, we have to do lot of bookkeeping, since we have
to record which items an individual has been presented, during recalculations. Therefore, it
would be nice to have some baseline measure which utilizes no prior (population) information
and could serve as a pseudo observation in the SSM. Such measure could then be combined
with population level information in the way discussed before. There are two candidates in
IRT models. The first candidate is the Weighted Maximum Likelihood (WML; Warm, 1989)
estimate of ability and the second candidate is the Weighted Expected A Posteriori (WEAP;



Eggen, Engelen & Verhelst, 1992) estimate. Both estimates utilize the weighted likelihood
(by the square root of the information) in IRT models, with the WML estimate being the
mode and the WEAP estimate being the mean of this function. In both estimation procedures,
individual ability is considered as a fixed (unknown) constant (compare section 2).

The measurement model with pseudo observations takes a simple linear form

9=0+e  €~N(O,VAR(®)) , (17

where 0 is the WML estimate or the WEAP estimate. The transition equations are as before.
In order to evaluate the WML and WEAP estimates, a simulation study was carried out. A
data set comprising 5 occasions (T1,...T5) was simulated for 10000 individuals according to
a latent first order autoregressive process. Given these abilities, responses were simulated
according to the Rasch model (40 items at each occasion). The autoregressive coefficient was
chosen equal to .8 throughout the time series. The variances of the latent variables were
chosen constant ( var=1), whereas the means where -2, -1, 0 , 1 and 2 respectively. The
item parameters in the Rasch model for each occasion where drawn uniform on the interval
of two standard deviations from the mean ability in the population.

For the cross-sectional, the filtered and the smoothed case the MSE, the bias and the
mean standard errors of estimation of true and estimated ability are presented in Table 1,2
and 3. For comparison, the results for the theoretical preferred EAP estimates are also

presented.
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TABLE 1

Comparison of estimated abilities using EAP, WML and WEAP in the cross-sectional and
longitudinal (filtered and smoothed) case with the Mean Squared Errors (MSE) as criterium

CROSS-SECTIONAL

T1 T2 T3 T4 TS5
EAP .12407 .12393 .13570 12778 .13826
WARM .14426 .14719 .16047 .14818 .16176
WEAP .15663 .16248 .17330 .15903 .17040
FILTERED

T1 T2 T3 T4 T5
EAP .12407 .10720 11505 .10938 .11663
WARM 12832 11121 .11833 11322 .11899
WEAP 12657 .10955 .11694 11172 11791
SMOOTHED

T1 T2 T3 T4 TS
EAP .10563 .09391 .10051 .09541 .11663
WARM .10894 .09687 .10357 .09884 .11899
WEAP .10968 .09741 .10398 .09884 11791

TABLE 2

Comparison of estimated abilities using EAP, WML and WEAP in the cross-sectional and
longitudinal (filtered and smoothed) case with the bias as criterium

CROSS-SECTIONAL

T1 T2 T3 T4 T5
EAP .00788 .00687 -.00340 .00334 .00005
WARM .00849 .00757 -.00417 .00320 -.00112
WEAP .00448 .00151 .00509 .00627 -.00075
FILTERED

Tl T2 T3 T4 T5
EAP .00788 .00688 -.00323 .00368 .00042
WARM .01471 .01636 -.01387 -.00283 -.00153
WEAP .01194 .01240 -.00892 .00008 -.00053
SMOOTHED

T1 T2 T3 T4 T5
EAP .00845 .00671 -.00365 .00290 .00042
WARM .01521 .01234 -.01360 -.00281 -.00153

WEAP .01598 .01291 -.01466 -.00310 -.00053
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TABLE 3

Comparison of estimated abilities using EAP, WML and WEAP in the cross-sectional and
longitudinal (filtered and smoothed) case with the mean standard errors (s.e.) as criterium

CROSS-SECTIONAL

Tl T2 T3 T4 TS5
EAP .35080 .35227 .36399 .35840 .36601
WARM .38206 .38476 .39742 .39028 .39826
WEAP .38322 .38611 .39842 39117 .39880
FILTERED

T1 T2 T3 T4 TS
EAP .35080 .32766 .33551 .33157 33732
WARM .35553 .33103 .33831 .33439 .33974
WEAP .35623 33158 .33870 33477 .33999
SMOOTHED

Tl T2 T3 T4 T5
EAP .32473 .30657 .31295 .31091 33732
WARM .32845 .30921 31518 31323 .33974
WEAP .32897 .30964 .31549 31354 .33999

The results show that the WEAP estimate and the WML estimate could serve as pseudo
observations. The loss in MSE for the WEAP and WML, in comparison with the preferred
EAP, is minor. The WEAP outperforms the WML slightly. The reason we prefer the WML
estimate as a base line measurement instead of the WEAP estimator, is because of the
additional feature of conditional unbiasedness (in the fixed case), which is convenient in

calculating groups means.

Summary

In the first part of this paper, the estimation or prediction of individual ability in the SSM
was discussed. The main point stated there was that the states in the SSM are random
variables. Therefore, we must realize that always two (or more) levels of sampling are
involved: occasions within individuals and individuals within the population. So, in our
opinion it is necessary, in assigning scores to an individual, whether we call this a prediction

or an estimation problem, to make use of information concerning both levels of sampling.
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In the second part of the paper, the linear measurement model of the SSM was replaced by
a non-linear IRT model. Following the setup developed in the first part of the
paper, estimators for the latent abilities could be derived in the same fashion.

In addition we discussed estimates of latent ability in IRT models which could be utilized
as ’'pseudo’ observations in the SSM. It turned out that both candidates, WML and WEAP
estimates, could serve, with minor loss of information, as such pseudo observations.
Throughout the paper it was assumed that all the parameters in the SSM were known, except
of course for the latent abilities. How to estimate these structural parameters will be discussed

elsewhere.
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