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Abstract 

First, the optimal solution to the estimation or prediction problem of individual ability 
('states') is discussed in the frame work of the State Space Model (SSM). 
Next, the consequences of replacing the linear measurement model in the SSM by a non­

linear Item Response Model (IRT) are investigated. 
Finally, the possibility of using estimates of latent ability in IRT as pseudo observations 

in the SSM are explored. 
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Introduction 

The task of characterizing gro wth in level of attainment within an individual student is 
far from easy. One reason for this is the typical unreliability of educational measures. More 
structural in formation concerning the student, such as measurements on previous occasions 
of the same or other skills and background in formation, could be used to reduce this 
uncertainty. 

As a general model the State Space Model (SSM) is chosen. The SSM consists of t wo 
sets of linear equations: transition (or process) equations and measurement equations. It is 
assumed that except for the individual abilities or 'states' all parameters in the SSM are 
kno wn. The question is raised ho w best to estimate or predict individual ability in this setting. 
In the second part of the paper, the linear measurement equations in the SSM are replaced 
by a more proper non-linear measurement model for an educational setting, namely an Item 
Response Theory (IR T) model. And again the question is raised ho w best to estimate or 
predict individual ability in this context. 

Estimating and Predicting Individual Ability in the SSM 

Having formulated an SSM and estimated the structural parameters of this model, it may 
be interesting to construct scales of measurements for the latent abilities or states. For 
example, we might be interested in ho w individual ability has changed bet ween occasions or 
we might be interested in the difference in ability bet ween t wo individuals. The problem in 
fact is ho w to use the in formation present in individual's observation(s) to locate him/her on 
the latent dimension(s) or state(s). As Bartholome w (1987) has pointed out: "there has been 
a long and controversial debate about ho w best to do this". We totally agree with 
Bartholome w that this debate has often been obscured by talk of 'estimating' the latent 
abilities as if they were parameters in the ordinary statistical sense. Remembering that the 
states in the SSM are random variables, it is often forgotten that these variables are still 
random after the observations have been made. So, we have a prediction problem, not an 
estimation problem. 

In the remainder of this paragraph we will elaborate the optimal solution to the prediction 
problem. First this will be done for the static case, and then (briefly) for the dynamic case. 
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For reasons of simplicity, classical test theory, as a sub-model of the SSM, is chosen as an 
illustration. Results, ho wever, are easily generalized for other SSM. 

The Static Case 
Consider classical test theory as a sub-model of the SSM. More specific, suppose that 

the measurement equation is given by 

y=ri +e, (1) 

where y is an observable test score, 11 the corresponding 'true score' and the error terme 
is distributed N(0,8) independently of y and 11. Furthermore, suppose that the transition 
equation is given by 

(2) 

where C ~N(0,O) and independent of e. 
Or more briefly, taking equation (1) and (2) together, y and 11 are related by the conditional 
distribution <Yl11)~N (11,8) and the marginal distribution (or prior distribution) of 11 is 
N(a,O) 

No w suppose that we are un willing to make distributional assumptions about 11 or in fact 
that we do not kno w  a and n. Can we estimate 11 from one single observation? If we close 
our eyes for the fact that 11 is random and look at 11 as being fixed, the GLS estimator 
would be the Best Linear Unbiased Estimator ( BLUE) of 11 . In the case of normality, it 
would also be the ML estimator. If we vie w the classical test theory model as a one- factor 
model, this estimator is kno wn as Bartlett's estimator for factor scores (La wley & Max well, 
1971). The GLS estimator and associated error covariance in the fixed case are given by 

-11=y and (3) 

(4) 
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The advantage often claimed for this estimator is that it is conditionally unbiased, 

E(T} lri)=ri. In other words, if we average T} over all individuals whose true scores are given 

by 11 , this average equals 11. To this kind of reasoning one could object that this estimate 

is not relevant for an individual without replications. Or to put it in other words, with a small 

sample (n= 1) the estimator T} will always be biased (small sample bias). In addition we 

neglected the fact that 11 is a random variable. If we take 11 is random, fl as defined above 

again has some optimal properties, which now must be expressed in terms of the estimation 

error, Tl - ,, . This estimation error has expectation zero and variance e , equivalent to the 

properties of the GLS estimator in the fixed case. It can be shown that fl is best within the 

class of linear and unconditionally unbiased estimators (extended Gauss-Markov theorem). 

So there is some evidence to use the GLS estimator in the case that we do not know the mean 

and the variance of T) . 

How to proceed if we know the mean and the variance of 11 ? Now the conditional 

distribution T) IY (or posterior) becomes of interest. Given the prior distribution of T} and the 

conditional distribution y ITl, use of standard results from multivariate analysis or application 

of Bayes' theorem will give us the posterior distribution of T} given y. As a prediction of 

an individual's Tl we could take the posterior mean, and the estimated true score, �, would 

then be 

(5) 

A measure of variation of the 11 's can be obtained from the posterior variance, 

(6) 

Remarks: 

1 The estimator � as a result of the prediction of the random variable 11 from y is 

unconditionally unbiased, i.e., we can see predictors as estimators of future values of 

random variables. 

2 Referring to the posterior variance, it is apparent that we can calculate this variance before 

any data is collected! More specific, the posterior variance is a statement about the 

properties of the estimator � based on the random vector y. If we make many estimates 
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of 11 , using measurements y, the sample variance T\ - fl would be approximately equal 
to the posterior variance (presuming 11 is kno wn). 

3 In classical test theory fl is called Kelley' s estimator of the true score and the ratio 
0(0 +er1 is kno wn as the test reliability (Lord & Novick, 1968). 

No w lets return to the Minimum Mean Square Estimation (MMSE) or Minimum 
V ari ance (MV) estimation. Dropping the assumption of normality, the question is no w: C an  
we incorporate prior in formation about 11 in the GLS estimator? To do this, we have to 
express the prior in formation in terms of a distribution for a -11 with mean zero and 
variance O (see Harvey, 198 1). The next step is to construct an augmented model 

(7) 

Updating the GLS estimator gives 

(8a) 

(8b) 

It is easy to sho w that the estimators T\ and 11* and their associated vari ances are equal (use 
the matrix inversion lemma). So, tackling the problem from different directions we end up 
with the same results. In factor analysis, the estimates 11* are kno wn as 'regression' factor 
scores (La wley & Max well, 197 1). 

Suppose no w that we have t wo or more observations. In the prediction setup, the 
posterior becomes the ne w prior and in the MMSE approach the GLS estimator is updated 
to incorporate the ne w in formation. For n observations this boils do wn to 

TI* n=Pn(0-1a +e-r�::: yi) and 
i-1 

(9a) 
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(9b) 

This is in fact a recursive linear estimation scheme ( Bayesian estimation). If we take11 
random, in the sense that it is randomly dra wn from a prior distribution and keep it fixed 
be fore we repeatedly generate the observations in y, the influence of the prior in formation 
will die out in the long run when n becomes large . In the limit, assuming inverses exists, 
equation (9a) will converge to the mean of the observations. In the case 11 is also redra wn 
every time an observation y is generated, in the log run, we end up, with the mean of the 
prior distribution, namely a. 

Dynamic Case 

The above updating scheme was static in the sense that we were updating the same 
random vector all the time. No w we consider the case where 11 changes bet ween 
measurements according to a specified statistical dynamic, i.e., a discrete random process or 
time series model. The transition equation is given by 

t=0,1,2, ... . ( 10) 

The estimation procedure for 11 follo ws the same steps as compared to the static case. The 
only thing we have to do is update the posterior be fore it becomes the ne w prior according 
to the time series model. The equations for these predictions and associated estimation error 
variances are given by 

( 1 1a) 

( 1  l b) 

If we have m measurements, zm �[y
0
,ypy

2
, ••• ,ym], the follo wing estimators for ability can be 

considered: 

( 12a) 
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(12b) 

Here w stands for the kno wn parameters in the model. The estimates 11* sis and 11* slm are 
kno wn as Kalm an filtered estimates and Kalman smoothed estimates respectively. For a 
thorough derivation and discussion of the Kalman filter model and equations for the estimates 
see Kalman ( 1960), Harvey ( 198 1), Jaz winsky ( 1970) or Catlin ( 1989). 

Comment 

The estimation or prediction procedure described above typically has a t wo-level 
character. In the present case, there are t wo levels of sampling involved: occasions within 
individuals, and individuals within the population. Especially it is worth while noting that the 
filtering procedure optimally combines the in formation in both levels of sampling. Dependent 
on the magnitude of the in formation present in the levels, weights will be accordingly 
attached to the levels for extracting in formation. We end up with estimates which are 
optimally in the sense that they minimize the MSE in the population. 

As an estimate for an individual's ability, all the estimates discussed above come into 
consideration. These estimates differ in the amount of in formation they incorporate. So if we 
want an estimate for an individual, choose the one which incorporates all the available 
in formation. So, a smoothed estimate will be better than a filtered estimate. 

IRT as a Measurement Model in the SSM 

The linear measurement model in the SSM is no w replaced by a more proper non-linear 
measurement model for an educational setting, namely an IR T model. First, an example of 
an IR T model will be given, the One Parameter Logistic Model ( OPLM), and some of its 
benefits will be discussed. Then, estimation of an individual's ability in the context of the 
SSM, with the OPLM as the measurement part, will be discussed. Finally, we discuss 
estimates of latent ability in IR T models which could be utilized as 'pseudo' observations in 
the SSM. 
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Item Response Theory 

An IR T model supposes that the ability or latent trait, commonly denoted by 8, is not 
directly observable. An IRT model specifies a probabilistic relationship bet ween this latent 
trait and the observable responses on test items of individuals from a well defined population 
of individuals. Consider, as is appropriate in this example, dichotomously scored items, and 
we define the random variables Xij, the response of student i (i = 1, ... ,n) on item j 
(j = 1, ... ,k), with possible values O (item is wrong) and 1 (item is correct). The basic equation 
of the IR T model we use is 

(13) 

In this equation P j is the difficulty parameter and aj the discrimination index of item j. The 
model further assumes unidimensionality of the latent trait, which implies local independence 
(given 8) of the item responses: 

( 14) 

and independence of the responses bet ween students: 

(15) 

In using an IRT model as the measurement model, t wo major problems can be 
distinguished: the first problem is the scaling (or calibration) of the total set of items which 
measure the ability, whereas the second problem is the measurement of the ability of (groups 
of} individuals on the established scale. In the calibration phase, the item parameters are 
estimated and the validity of the model is tested on the basis of responses of students to the 
items. It is decided in this phase whether there are items which do not follo w the model and 
must be rejected from the item pool and whether the assumptions of the model yield. The 
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procedure we prefer for estimating the item parameters is conditional maximum likelihood 
estimation ( CML). The CML procedure has several attractive features: 
a item parameters can be estimated without making any assumptions about the distribution 

of the latent ability; 
b no need for a random sample from a population, i.e., the consistency of the item 

parameter estimates is not influenced by the sampling method; 
c item calibration in incomplete longitudinal designs is possible without complications; 
d test statistics at the item level are available which have well kno wn good statistical 

properties. 
With CML, the measurement problem, i.e., estimating item parameters and assessing model 
fit, is separated from the structural problem, i.e., estimating latent abilities. 
The application of CML, ho wever, is restricted to the case in which there exists a sufficient 
statistic S i

=S(Xu,···,Xik) for the individual parameter Bi. The model we use is the One 
Parameter Logistic Model, which model was introduced and first applied on a large scale in 
the Dutch National Assessment Program (Verhelst & Eggen, 1989). The model is a special 
case of the Birnbaum model (Lord & Novick, 1968), from which it differs that in the model 
the discriminating po wer of an item is not modelled as a parameter which is to be estimated 
but as a hypothesized kno wn integerk constant. The model belongs to the exponential family, 
with the weighted sum score S = L aj Xj as the sufficient statistic for Bi, which makes it 
possible to develop sound statisticaf-procedures for estimating and testing the model. In the 
remainder of the paper we consider the item parameters kno wn. 

Individual Ability 

Suppose we have a large item bank from which we have constructed a suitable test for 
each occasion t (t=l,2 ... T ). Furthermore we have registered, for each occasion, the 
( weighted) test scores, st, for an individual dra wn form some population with corresponding 
latent abilities et. Ho w to estimate et? 

First, we deal with the cross-sectional case. As be fore, we have t wo sources of 
in formation. One source of in formation comes from the population level, et is dra wn from 
some population with kno wn ability distribution GA (St) (prior), whereas the other source is 
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from the individual level, the observed test score st. As an estimator of individual ability, 
a; , we once again take the mean of the posterior 

f et L(8 t l st,w )G,. (8 t)d et E(8 t l st,w,A)=�------
f L(8 t l st,w )G,. (8 t)d8 t 

(16) 

Here, A and w are kno wn parameters, and L st ands for the likelihood of the IRT model. 
The conditional mean, a;, called Expected A Posteriori (E AP) estimate of ability ( Bock & 
Mislevy, 1982), in IR T is comparable to the estimate considered in the r andom case in the 
linear model as discussed be fore. 

And also for the dynamic case we use the obtained posterior to make an prediction 
according to the time series model which in tum becomes the ne w prior to obtain filtered 
estimates. And finally, as be fore, smoothed estimates can be obtained using a set of backward 
recursions with these filtered estimates. For reasons of duplication and space we will not give 
the expressions for these estimators and associated error covariances. 
In summary, replacing the measurement model in the SSM by a non-linear IR T model will 
not change the estimation procedures for the latent abilities much. 

Pseudo Observations 

E AP estimates ( filtered or smoothed) for individual ability seem the right thing. 
Ho wever, the use of E AP estimates gives some practical disadvantages, especially in 
combination with time series models. Suppose for instance that we want to use several time 
series models for an individual, or, in the cross-sectional case, suppose that one wants to 
choose several priors. The evaluation of the integrals, ho wever, involved in calculating E AP 
estimates becomes rather expensive. Also, we have to do lot of bookkeeping, since we have 
to record which items an individual has been presented, during recalculations. There fore, it 
would be nice to have some baseline measure which utilizes no prior (population) information 
and could serve as a pseudo observation in the SSM. Such measure could then be combined 
with population level in formation in the way discussed be fore. There are t wo candidates in 
IR T models. The first candidate is the Weighted Maximum Likelihood ( WML; Warm, 1989) 
estimate of ability and the second candidate is the Weighted Expected A Posteriori ( WE AP; 
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Eggen, Engelen & Verhelst, 1992) estimate. Both estimates util ize the weighted likelihood 
(by the square root of the in formation) in IRT models, w ith the WML estimate being the 
mode and the WE A P  estimate being the mean of this function. In both estimation procedures, 
individual ability is considered as a fixed (unkno wn) constant (compare section 2). 
The measurement model with pseudo observations takes a simple linear form 

e~N(O,V AR(8)) ( 1 7) 

where 8 is the WML estimate or the WE A P  estimate. The transition equations are as be fore . 
In order to evaluate the WML and WE A P  estimates, a simulation study was carried out. A 
data set comprising 5 occasions ( Tl , . .. T5) was simulated for 1 0000 individuals according to 
a latent first order autoregressive process. Given these abilities, responses were simulated 
according to the Rasch mode l  (4 0 items at each occasion). The autoregressive coe fficient was 
chosen equal to .8 throughout the time series . The variances of the latent variables were 
chosen constant ( var =l), whereas the means where -2, -1, 0 ,  1 and 2 respectively. The 
item parameters in the Rasch model for each occas ion where dra wn uni form on the interval 
of t wo standard deviations from the mean ability in the population. 

For the cross-sectional, the filtered and the smoothed case the MSE, the bias and the 
mean standard errors of estimation of true and estimated ability are presented in Table 1,2 
and 3. For comparison, the results for the theoretical preferred E AP estimates are also 
presented. 
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TABL E 1 
Comparison of estimated abilities using EAP, WML and WEAP in the cross-sectional and 
longitudinal (filtered and smoothed) case with the Mean Squared Errors (MSE) as criterium 

CR OSS-SE CTI O N AL 
Tl T2 T3 T4 T5 

E A P  . 12407 . 12393 . 13570 . 12778 . 13826 
WARM . 14426 . 147 19 . 16047 . 148 1 8  . 16176 
WE A P  . 15663 . 16248 . 17330 . 15903 . 17040 

FILTERED 
Tl T2 T3 T4 T5 

E A P  . 12407 . 10720 . 1 1505 . 10938 . 1 1663 
WARM . 12832 . 1 1 12 1  . 1 1 833 . 1 1322 . 1 1899 
WE A P  . 12657 . 10955 . 1 1694 . 1 1 172 . 1 179 1  

SM O OT HE D  
Tl T2 T3 T4 T5 

EAP . 10563 .0939 1 . 1005 1 .0954 1 . 1 1663 
WARM . 10894 .09687 . 10357 . 09884 . 1 1 899 
WE A P  . 10968 .0974 1 . 10398 .09884 . 1 179 1  

TABL E 2 

Comparison of estimated abilities using EAP, WML and WEAP in the cross-sectional and 
longitudinal (filtered and smoothed) case with the bias as criterium 

CROSS-SECTIONAL 

EAP 
WARM 
WEAP 

FILTERED 

Tl 
.00788 
.00849 
.00448 

Tl  
EAP .00788 
WARM .0147 1  
WEAP .01 194 
SMOOTHED 

EAP 
WARM 
WE A P  

T l  
.00845 
.01521 
.0 1598 

T2 
.00687 
.00757 
.0015 1 

T2 
.00688 
.01636 
.01240 

T2 
.0067 1 
.01234 
.0129 1  

T3 
- .00340 
- .00417 
.00509 

T3 
-.00323 
-.0 1387 
-.00892 

T3 
-.00365 
- .0 1360 
-.01466 

1 1  

T4 
.00334 
.00320 
.00627 

T4 
.00368 

-.00283 
.00008 

T4 
.00290 

-.00281 
-.003 10 

T5 
.00005 

- .001 12 
-.00075 

T5 
.00042 

-.00153 
-.00053 

T5 
.00042 

- .00153 
-.00053 



TABLE 3 

Compar iso n of est imated ab ilit ies us ing E AP, WML and WE AP in the cross-sect iona l and 
long itud inal (filtered and smoot hed) case with the mean standard errors (s.e . )  as cr ite rium 

CR OSS-SE C TI O N AL 
T l  T2 T 3  T4 T 5  

E AP .3508 0  .3522 7 . 36 399 .3584 0 .366 0 1  
WARM .382 06 .384 76 .39 742 .39 028 .39826 
WEAP .38 322 .386 1 1  . 39842 .39 1 17 .3988 0 

FIL TERE D 
T l  T2 T 3  T4 T5  

E AP .3508 0  .32 766 .3355 1 . 33 157 .33732 
WARM .35553 .33 1 03 .338 3 1  . 334 39 . 339 74 
WE AP .3562 3 .33 158 .338 70 .33477 .33999 

SM O O T HE D  
T l  T2 T 3  T4 T 5  

E AP .324 73 .306 57 . 3 129 5 . 3 109 1  . 33732 
WARM .3284 5 .3092 1 . 3 1 5 18 .3 132 3  .339 74 
WEAP .3289 7 . 30964 . 3 1549 . 3 1354 .33999 

The results sho w that the WEAP est imate and the WML est imate could serve as pseudo 
observat ions. The loss in MSE for the WEAP and WML, in comparison with the preferred 
E AP, is m inor . The WE AP outper forms the WML sl ightly. The reason we prefer the WML 
est imate as a base l ine measurement instead of the WE AP est imator, is because of the 
add it ional feature of cond it ional unb iasedness ( in the fixed case ), wh ich is conven ient in 
calculat ing groups means. 

Summary 

In the first part of th is paper, the est imat ion or pr ed ict ion of ind iv idual ab il ity in the SSM 
was d iscussed. The ma in po int stated there was that the states in the SSM are random 
va riables. There fore, we must real ize that al ways t wo (or more ) levels of sampl ing a re 
involved: occas ions with in ind iv iduals and ind iv idua ls with in the populat ion . So, in our 
op in ion it is necessary, in ass ign ing scores to an ind iv idual, whether we call th is a p red ict ion 
or an est imat ion problem, to make use of in format ion concern ing both levels of sampl ing. 
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In the second part of the paper, the linear measurement model of the SSM was replaced by 

a non-linear IRT model. Following the setup developed in the first part of the 

paper, estimators for the latent abilities could be derived in the same fashion. 

In addition we discussed estimates of latent ability in IRT models which could be utilized 

as 'pseudo' observations in the SSM. It turned out that both candidates, WML and WEAP 

estimates, could serve, with minor loss of information, as such pseudo observations. 

Throughout the paper it was assumed that all the parameters in the SSM were known, except 

of course for the latent abilities. How to estimate these structural parameters will be discussed 

elsewhere. 
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