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Abstract 

From earlier investigations it was found that the information from Multiple Choice (MC) questions could be increased about four fold by having the subject indicate the subset of options that he is unable to expose as false. In the present models this approach is generalized by having the subject distribute a number of 'taws' over the options, or draw a line after the options, such that the number of taws given to an option, or the line length reflects its subjective degree of correctness. It appears that even with values of the relevant parameters that seem modest, the information relative to binary scoring still is in excess of two. This means that with less than half the test length the same accuracy or reliability can be obtained as with binary scoring. If a few main fallacies can be reflected in the distractors of the items, the model can be applied to identify subjects with one of these fallacies. 





Introduction 

Several statistical models exist to describe the choice behavior of a student in the selection of an alternative of a multiple choice (MC) item. Among them Thissen and Steinberg (1984, 1997), Verstralen (1997), Verhelst and Verstralen, (in press), Verstralen and Verhelst (in press), Jansen and De Boeck (1998). The present approach can be viewed as a continuation of Verstralen (1997) and Verstralen and Verhelst (in press). Their approach is based on the assumption that a subject first selects a subset with 'possibly correct' alternatives, and subsequently randomly selects one alternative from this not observed subset. An important extra assumption in this model is that the subset always contains the correct alternative, and further, to convey information about the latent variable '19, it is assumed that the expected size of the subset shrinks with '19. As a side result from this approach it was found that the amount of information about '19 would be substantially larger (in the order of four to five times larger) if the subset would have been observed. However, contrary to latent subsets, observed subsets are expected to violate the assumption that they always contain the correct option. Therefore, to tap the information about '19 from the subject's evaluation of all the alternatives of an MC item, another data format with an accompanying model is needed. An obvious generalization of the subset of options, is the fuzzy set of options. The fuzzy set approach implies that the subject gives weights to the options that reflects the subjective correctness of the options. This type of data was already studied by Dirkzwager (1975,1996) in a more classical context. Here an IRT approach is developed for these data, where the weights are restricted to be integer. In the first model, the Dirichlet Multinomial (DM) model, it is assumed that a fixed number of taws is distributed over the options of an item. The fixed total number of taws causes the number of taws per option to be conditionally interdependent between options, given the ability of the subject. In case this may be difficult to accomplish by the subject, in the Beta Binomial (BB) model the maximum number of taws is fixed per option, not the total number of taws per item. This makes the weights over the options conditionally independent. In the next two sections the DM and BB models are treated, and the gain of information for both models is discussed in section 4. From section 5 on further details of the models are provided, and an estimation procedure is developed, along with a procedure to evaluate the fit of the model. Thereafter we discuss a diagnostic application of the models which allows to identify subjects with a common fallacy that can .be 
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represented in the distractors of the items in a test. Finally, the theory is applied to a generated data set among other things to check whether specific model violations are detected. 
The Dirichlet-Multinomial model 

A subject v is asked to distribute N taws over the alternatives of an item such that the distribution of taws reflects his subjective probability of cor­rectness of the alternatives. Consequently, the data consist of vectors 11.vi = 
(nviO, ... , nvi(J-1)), with nvij the number of taws put by subject v on alter­native j of item i. We first focus on the response of a single subject to one item. Therefore, the subscripts v and i are dropped. Let .7I =.7I('1.9) = (7r0 ('1.9), ... ,11"J-i('1.9)) be a model that describes the proba­bility to put a taw on the options of a MC question with J alternatives as a function of the latent variable '1.9, where the subscript O indicates the correct option. Assume that 

71"� = ! 7ro('1.9) > 0 (1) 
for all 1J. Except for this assumption the function .7I will not be specified further in this section, and the next. One could, of course, model the distribution of 11. at '1.9 as the multinomial 

(2) 
with L nj = N. However, this model is flawed, because it implies that infor­mation about '1.9 increases without bound with the number of taws N. Indeed, for limN-+oo the probabilities .7I('1.9), and, therefore '1.9, can be observed without error. To obtain a more plausible model we assume that the subject is not an acute perceiver of his own .7I, and that his uncertainty about .7I is independent of N. Let µ be a positive acuity parameter, and assume that the observed dis­tribution of taws is realized in two stages. First a vector of probabilities g_ = g_( '19) is drawn from a Dirichlet distribution 
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(3) 
with the proportionality constant 

(4) 
With this distribution, indexed by ,,9, £-0% = 1r3 , and Var19 (q3) = 1r3 (1 -
1ri)/(µ + 1). From the mean and variance of qi it follows that the higherµ, the closer q3 is drawn around 1r3. Second, conditional on 2_, n. is drawn from 
the multinomial distribution 

(5) 
The marginal distribution of n. is then given by the Dirichlet-Multinomial 
(DM) distribution (Johnson & Kotz, 1969 , sec. 11.8) 

p(n.; ,,J) - (:) A(µK) J IT qrj+nj-ldq 
_ ( N) A(µK) 

n. A(µK+n.)" 
The mean and ( co )variance of DM distributed n. are given by 

£n3 N1r3 , 
(µ+ N) Var(n3 ; N, µ,K) - ( ) N1r3(1 - 1r3). µ+1 

(µ+ N) Cov(n3, nk; N, µ,1[) - - (µ + l) N7rf7rk· 

(6) 

(7) 

For N = 1 the variance is independent of µ. Using Formulas ( 4) and the second part of (6) it readily is found that for N = 1 the DM distribution does not depend onµ. For µ --+ 0 the limiting variance is N21r3 (1 - 1r3) = N2Var(n3 ; 1, .,1[). This implies that for µ --+ 0, the subject first behaves as if he has just one 
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taw to distribute as the multinomial zr:, and puts the rest N - 1 taws on the same option where he has put his first taw. Alternatively, one could say that for µ -+ 0 the subject selects as his vector 9.. the vector Ij with probability 7rj, where Ij is row j + 1 from the identity matrix IJ. And then puts all his N taws on option j with probability 1, according to the multinomial with parameters (N, Ij)-Theoretically, in this model for constant µ > 0 the information about {) increases with N, but, for O < 7rj < 1, not without bound. The information is bounded by the uncertainty generated by D(zr.). Because the Cramer-Rao bound of the standard error of qj equals ✓ qi (];;qi) , 9.. can be observed without error for limN-+oo • As stated before, the uncertainty generated by D(zr.) depends inversely on µ. The loglikelihood of the DM model is 
lnp (rr; '19) - ln (:) + lnA(µ.zr:) - lnA(µ.zr: + rr) (8) 

C + lnr (µ) - lnr(µ + N) - L [I�r(µ1rj) - Inr (µ1rj + nj)]. 
j 

Define I:::!oxi = 0, and using Inr (z + 1) = lnz + lnr (z), then the result can be expressed as 
N-1 ni-1 lnp (_rr; '19) = C - L In(µ+ i) + L L ln (µ1rj + i), (9) 
i=O j i=O where only the last part depends on ,{J. 

The Beta-Binomial Model 

In the DM model subjects are to distribute a fixed amount of taws over the options of a multiple choice question. When considering the weight of a certain option a subject has to simultaneously consider the weights of the other options. And, perhaps move a taw from one option to another. It may be easier for subjects to assign up to N taws to one option at a time, without considering the other options. It will be the burden of this section to develop a model for data generated in this manner. 
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In the Beta-Binomial model it is hypothesized that a subject proceeds in two steps for every option of an item. For an option j he first he draws a random probability q from the Beta distribution with parameters (µ1rj, µ(l-1ri)). 
(10) Next he draws a number ni of taws from the Binomial distribution (N, qi). 
(11) The marginal probability ( qi integrated out) to observe ni taws for an option in the Beta-Binomial (BB) is then given by (Jonson, and Kotz, 1969, sec. 3.11) 

p (n-· '8) = (N) r(µ)r(µ1ri + ni)r(µ(l - 1ri) + N - ni) ( ) 1' ni r(µ + N)r(µ1ri)r (µ(l - 1ri)) • 12 
Mean and variance of ni are the same as in the DM model, because the BB model is the marginal distribution of ni in the DM model. However, the covariance vanishes in the BB model because the options are independent. After the same algebra as in the previous section on the DM model, we obtain for the BB model 

N-1 lnp(li; 19) - C - J L In(µ+ i) + 
i=O 

� (t ln(µir; +i) + N�r ln(µ(l - ir;) +i)) 
(13) 

The limit for µ ----+ 0 makes the BB model, like the DM model independent of N. For µ --+ 0 in the BB model all N taws are put on option j with prob­ability 1r j or no taws at all, for each. option j independently. For µ > 0 the information about {} increases with N, however, bounded by the uncertainty introduced by the Beta model. Because each option independently receives up to N taws, in the BB model there is no equivalent for binary scoring . For N = l each option may receive one taw. But, like the DM model, the BB model is also independent of µ for N = l. 
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The information of the DM and BB models 

compared to binary scoring 

For the DM model we will use 
(14) 

and for the BB model 
b(n, 1r) = d(n, 1r) + d(N - n, 1 - 1r). (15) 

First we will derive the Fisher-information about ,,Jin the DM model. It follows from Formula (9) that the information function in the DM model for 
iJ can be written as 

(16) 

where the DM model is indexed with {}, and where 
(17) 

We will show that the second line of Formula (16) vanishes. For all com­mon densities or discrete probability functions p(.) the order of differentiation and integration can be changed, so that 

Therefore, 

£p(x) (lnp(x))' 1 p(x) (lnp(x))'dx (18) 
- 1 p'(x)dx = (1 p(x)dx )' = 11 = 0. 

6 



with ni beta-binomially distributed. The value of JI.1 is obviously arbitrary (because no model for JI. is specified as yet), except for the restriction 
(20) 

j j j The arbitrariness of JI.' implies that 
(21) 

is independent of j, and, therefore,· independent of the value of 1r i, and depends only onµ and N (take in Formula (19), 7r'0 = 1, 1ri = -1 for some j, and zero otherwise). Because JI.11 also obeys restriction (20), it immediately follows that the second line of Formula (16) vanishes. Therefore, we have that 
IDM(rJ; µ, N) = L (µ1rj) 2 t'i9d(nj, 1ri)­i (22) 

Because ni is beta-binomially distributed, IDM can be numerically evaluated for all values of µ and N that are useful in practice. For the BB model b(.) is substituted for d(.). Comparing the information to binary scoring, assuming equal trace lines for the distractors will yield a particularly attractive expression for the rela­tive information. It is easily checked that for N = 1 
(23) 

(24) 
7 



which are independent of µ. In the case of equal trace lines for the distractors, that is for j > 0 all 1r i are equal, this simplifies to 
( 7r�)2 and 1ro(l -1ro) ' 

( / )2 ( 1 1 1 ) 7ro --- -+ -- + ---- . 1ro(l -1ro) 1 -1ro J - 2 + 1ro 
IDM(iJ; µ, 1) equals the information function for binary scoring: 

(25) 
(26) 

IB(iJ) - 1ro ( (ln1ro)') 2+ (l -1ro) ( (ln (l -1ro))') 2 (27) ( 1r�)2 - I* (·0• 1) (1 ) - DM v,µ, , 1ro - 7ro 
whereas r;38(iJ; µ, 1) equals I8(iJ) for 1r0 -+ 0, and equals twice this value for 1r0 -+ 1 (in Appendix C it is shown that this holds for all values of N). The relative information RIDM = IDM / 18 is, therefore, given by 

RlvM( ,J; µ, N) = µ21ro (1 - 1ro) ( C,d(  no, 1ro) + � ( � )' C.,d( n;, 1r;)) . 
(28) 

Using that }: 1rj = 0, and under the assumption of identical trace lines for the distractors, it is found that 

where 1r1 = (1 -1ro)/( J -1), and we have that RinM(1ro(iJ); µ, N) depends on iJ only through 1r0. Because for all items 1r0 has the same range, RI*(1r0) represents an approximation to the relative information for all items with 
J options. The corresponding formula for the BB model again is found by substituting b(.) for d(.). It is interesting to compare RinM(iJ; µ, N) for a certain value of N with its limit for N - oo. As argued before this limit is given by the Dirichlet 
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model, because for N = oo, q can be observed without error. So instead of taking the limit for N � oo of IvM in Formula ( 22), it suffices to take -£µ1f. (ln p(�))" , with p the Dirichlet distribution. The loglikelihood to observe g_, is given by 

lnp( g_) = lnr(µ) + I)µ11'j -1) lnqj - lnr(µ7rj)- ( 30) 
j 

The first two derivatives w. r.t. rJ are 

j 

lnp( g_)" - µ L 7r'J ( lnqi - v;(µ7rj)) - µ7r'/VJ'(µ7rj), 
j 

( 31) 

with v;( z) = Jz lnr( z) the digamma function, and v;' the derivative w. r. t. 
z. For the same reason as above after Formula (16), the part of the expec­tation of the summand with 7rJ in Formula ( 31) vanishes, and the expected 
information function is 

-£µII (lnp( g_))" = j;,2 L 7r'/VJ'(µ7rj)­
j 

. So that the maximum of RlvM is given by 

( 32) 

In the same way the Beta model is the limit for the BB model. In Ap­pendix B the information function for the Beta model is derived. Let 

(34) 

and the corresponding formulas for the Beta model are found by substitution of VJ�( .) for 1/J'( .). 
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Rei. lnrormation at N=30, µ=2.0, and J=3,4,6 

0,0 01 02 0,3 04 o.s 0.6 0.7 08 09 1,0 

Figure 1: Relative information of the DM model at N = 30 taws, µ = 2.0 and J = 3, 4, 6 compared to binary scoring. 

Rei. lnformaUon at N=30, µ=1.0,2.0,4.0, J=4 

. . 

00 0,1 02 03 04 05 0,B 0,7 0,8 09 1.0 

Figure 2: Relative information of the DM model at N - 30 taws, µ -1.0, 2.0, 4.0 and J = 4 compared to binary scoring. 
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Rei. Information at N=1 . 10,30,oo, µ=2.0, and J=4 

1 8  

1 6  

0 • 

0 1 0 2 0 3 0 4 0.5 0 6 0., 7 0 8 0 9 

Figure 3: Relative information of the DM model at N = 1 ,  10, 30, oo taws, 
µ = 2.0 and J = 4 compared to binary scoring . 

Figures 1 ,  2, and 3 give an impression of the dependence of RinM on the values of respectively J, µ, and N. For µ the value 2.0 is chosen as a representative value. At µ =  2.0, the Beta distribution for 1ro = 0.5 , which is the marginal Dirichlet for 1r0 = 0.5, is a constant. So at µ = 2.0, 1r0 = 0.5 q0 is drawn from the uniform distribution on [0,1], and the standard deviation of q0 equals 0.29. This seems quite large. Therefore , µ = 2.0, perhaps , is an underestimate of the true value for this parameter. F igure 2 shows that the relative information increases steeply with µ. Consequently the value of 
µ determines to a large extent the gain of information that is to be expected from the DM-model. But even ifµ = 1.0, and with only 10 taws the smallest relative information still exceeds 2. Which means that comparable precision is obtained with less than half the test length compared to binary scoring. However, only parameter estimation with real data can clarify this issue. Because, the dependence of the relative expected information on µ, and N is the most conspicuous , we repeat Figures 2 ,  and 3 for the BB-model in Figures 4 ,  and 5. The relative information for the BB model starts at 1r0 -+ 0 at the same value as for the DM model. For 1r0 -+ 1 it becomes twice as large. At 
1r0 = 0.5 it is 1.6 times as large. In practice, the information about ,{) most likely will not keep increasing with N, because from a certain value of N a  lower estimate for µ will result. 

11 



Probably a subject v will turn out to have an optimum value for N, denoted by Nv. If given a lower number of taws than Nv to distribute, part of his potential to inform about his ability is left unused. If given a larger number of taws than Nv he is supposed to give more information than he is able to. This optimal value Nv is called his resolution. If the actual number of taws N does not match ills resolution Nv one could assume that v first distributes Nv taws and next multiplies the resulting vector n by c = N / Nv, and then rounding such that the sum of taws equals N. Because in the present models µ is an · item parameter it is assumed that the resolution of all subjects has about the same value. Now, if a subject v has a resolution of Nv taws, but has to distribute N = cNv taws over the options at µ = µ' , it follows from Formula (7) that the estimated µ* is given by 

and so that 
(µ' + Nv) (µ* + cNv) 

c...;__--� = ----(µ'+ 1) (µ* + 1) • 

(35) 

(36) 
For instance, at µ' = 2, Nv = 10, and c = 2, we would expect an estimate µ* = 1.711. It may seem an attractive idea to estimate e = 1/ c > 0 as a resolution parameter. Unfortunately, substitution of eN for N and en for n in For­mula (2) reveals that p(  en; 1.9) = 1 for e = 0, and, therefore, that maximum likelihood is approached for e --t O, or c --t oo. In the next section a model for zr: is introduced, whereafter parameter estimation and model tests will be treated. 

1 However, this moment estimate turns out to deviate from the maximum likelihood 
estimate, which, as appears from simulations, in this example turns out to be around 1 .46. 
And this maximum likelihood estimate does not appear to be influenced by the number 
of items (5, 10, 20, and 40) nor by the number of subjects (200 and 1000, at 5 items) . 
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Rei. lnformaUon at N=30, µ=1,2,4, J=4 

BB, and OM models 

- .. .,.., _ .,.., 
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Figure 4: Relative information of the BB model at N =30 taws, µ . = 
1.0, 2.0, 4 .0, and J=4 .compared to binary scoring. For comparison the same curves for the DM model are inserted. C orresponding curves coincide at their leftmost points. 
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Rei. Information at N=1 ,10,30,"', and J=4 
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Figure 5 :  Relative information of the BB model at N - 1 ,  10, 30, oo taws, 
µ = 2.0 and J = 4 compared to binary  scoring. 
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A model for 1r 
To further develop the DM and BB models a model for 1r is to be chosen. Let 

(37) 
with a a discrimination parameter and f3j (j > 0) a location parameter. Further, let To = 1 and let lj > 0 (j > 0) denote an attraction parameter, and let 

then 1r j can be defined as 
lj • 0 Tj = 1 + (j ' J > 

- Tj 

7r
j 

- �k Tk . 

(38) 

(39) 
So a common discrimination for all options of an item is assumed, and only differences in discrimination between items are allowed. The main reason for a common steepness for options is that often the data on false options will be too sparse for accurate estimation of differences in discrimination between options. The parameter J3 determines the location of the option and I its attractiveness. The parameters /3 and I can be simultaneously estimated reliably only with very large data sets . Their estimates are highly positively correlated, because increasing /3, can be largely compensated for by increasing 'Y as well. There has to be a substantial amount of observations also at the lower values of ,{}, to reliably distinguish between the effects of J3 and 1. To see this T j can be rewritten as 

where the additive entangling of f3 j and ln I j , or the multiplicative entangling of exp(/3j) and lj, are clearly visible. 
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To accommodate not very large data sets one may choose between two restricted models : l. , = 1 for all items, ( or impute a value per item) 2. (3 = 0 for all items, (or impute a value per item) To distinguish the models the unrestricted model is called 1ru, and the restricted models respectively 'lrf3, where (3 is free to be estimated, and 1r-y , where , is free to be estimated. The restricted model 1r f3, with 1= l, has the property that 
lim 1r i = 11 for j = 0, ... J - l. 

1J-+-oo 
(41) 

So all options are assumed equally attractive for low values of ,,J. In the restricted model 1r -r the relative attractiveness of distractors re­mains the same over the entire range of ,,J. It can easily be shown that the 
1r-y model is equivalent to the model in Verhelst and Verstralen (in press). These authors present the model in the parametrization 

P(X 

P(X 

01e) = voe 
1 + voe 

ll ·  J le) = i + :oe' (j > o), 
(42) 

with e > 1, and I::j=l v i = l. Without changing the model one could also choose v0 = 1 as a normalization for y_, with Ei=l v i free to be estimated . Moreover, reparameterize e = 1 + exp(a,,J), which is more general because a =  1 in the original model, and substitute the symbol , for v, with 'Yo = 1, then the model can be written as 
P(X 

P(X 

_ 0j -iJ) = 'Yo ( 1  + exp ( a,,J)) I::j=l 'Yj + TO (1 + exp(m9)) 
j j,,J) = 'Yj ' (j > 0), 

Lj=I 'Yj + 'Yo ( 1  + exp(cx!9) )  
(43) 

which is easily shown to be equal to Formula (39) by noting that (i does not depend on j in the 1r -r model. The parametrization given by Formula ( 42) is significant because it shows that a model, formally equivalent to the Rasch-model , allows for guessing by introducing a new interpretation of the parameters . 
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Parameter estimation 
Parameter estimation can be accomplished by the EM-method (Dempster, a.o., 1977). Let rJ be distributed as g. If we have a test with k MC items, the vector of observations of subject v is denoted as 'Il.v = ('Ilvi , . . .  , 'Ilvk) . Then the complete data loglikelihood of observing (�v, rJ v) is given by 

(44) 
with .Cl the parameter vector of the model. The marginal or expected loglike­lihood is 

The posterior of rJ, given the observation of � is given by 
h('!9; .!1I�) ex ITPi('Ili i '!9)g('!9) . (46) 

Because the first order derivatives of the marginal loglikelihood Mi = Lv M iv are equal to the first order derivatives of the posterior expected loglikelihood, we have 
Mi+ C = L j i(.Cl; �v' rJ)h('l9 ; ,Cll�)drJ, 

V 

(47) 
with C a constant . An iterative EM-algorithm is obtain�d by distinguishing .Cl* as the vector of parameters known from the previous iteration, and .Cl as the vector of parameters for which the following function has to be maximized in the current iteration 

Q(fl, fl*) = L J iv(fli �v, rJ)h('l9; ,Cl* l�)drJ . 
V 

(48) 
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Given �t-l from iteration t - 1 in the E-step the first and second derivatives of Q (�, �*) w.r.t. �' evaluated at l-1 , are obtained , and in the M-step values of �t are obtained by performing one Newton Raphson step 
(49) 

where Q(n) denotes the mn matrix of nth derivatives of Q w.r.t. �' and m denotes the number of elements of �- The formulas for the derivatives of Q can be found in Appendix A. Standard errors of estimation are found by the method developed in Louis ( 1982). If we let g = N(J, 1) , the normal distribution, the integral in Formula ( 48) can be approximated by the Gauss-Hermite procedure: 
N 

j e-x2 J (x)d x  = L wd(xi), 
i=l 

(50) 

where w is a vector of weights , and ;f. a vector of values of the argument of x. Values of w and ;f. can be found for values of N from 2 through 190 by an algorithm in Press , a.o. ( 1992). Whereas in the 1ru and the 1r f3 models the zero point of the scale can be fixed at "J = 0, this is not the case in the 1r 'Y model. In the 7r
-y 

model "J has to be estimated ,  because the origin of the scale is already fixed by choosing I}__ =  _Q. However, the convergence of the EM-algorithm while also estimating 
"J is excruciatingly slow. The additive entangling of 'Yij and {3ij as shown in Formula ( 40) holds , of course, also for 'Yij and 7], and , therefore, for "J as well. In Appendix A only one parameter µ is mentioned without a subscript or µ(.) as a function of something else. However , it is conceivable that µ depends on the subject, then we have µv , or on the item, µi , or even on the combination of subject and item, µvi • Except for µi these interpretations lead to too many parameters to estimate accurately. Because µ may be subject dependent ,  there seem to be four options to pursue: 

1. Consider µ, like rJ, as a nuisance parameter , and take the marginal likelihood w,r.t. the joint distribution of µ and rJ 
2. Consider µ as a function of rJ ,  and estimate e.g. , 
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(a) µq for every Gauss-Hermite point, or for groups of adjacent Gauss­Hermite points (b) µ = f ( '!9), with f e .g . ,  cubic, and estimate the four cubic parame­ters 
3. Consider µ as an item parameter . 
4. Consider µ as a constant. 
If there were prior knowledge about µ option 4 would certainly be the most preferred . However, if there is not, option 3 results in the most simple EM-algorithm, because the matrix of second derivatives is blockdiagonal, with one small lower triangular matrix per item, and, therefore, is the best to investigate first. If there were an indication that µ is related to ability, option 2.a. would be preferable, because it enables to fit a linear , quadratic , cubic etc. to these estimates, and to judge whether the simplification to the direct estimation of a certain f is justified. Option 1 has the disadvantage that a double integral has to be calculated, which slows down the estimation tremendously. In the sequel option 3 is pursued. 

Initial estimates 

The iterative EM-procedure must be started with an initial guess about the value of the parameters. Initial estimates are generally obtained by adopting some simplifying assumptions. As mentioned in section 2 £nj = N 1rj('!9) .  If, as a simplifying assumption we set iJ = 0, then 7rj (O) � ni/ (NV) . If we apply the 1ru model, and so have to estimate f3 and 'Y, the latter can be given an initial value of 1, as in the 1r13-model. In both models we then have that 
/3 · = ln (1rj('!9) - 1) � ln (nj + 0•5 - 1) . 

J 1ro( iJ) no + 0.5 (51) 

With these initial estimates for /3, the estimation procedure is very robust for general initial values for µ, and a, like 1 or 2. If the 1r,,-model is applied , and /3 is not a parameter , initial values for 'Y are found as 
18 



- n ·  + 0.5 'i = ( 1 + exp(a'!9)) 3 , no+ 0.5 (52) 
with a an initial estimate of ai , and "J of the mean of '19. 1 + exp(a°J) = 2 for 
"J = 0. 

Testing the model 

Model tests can be constructed using the framework of the Lagrange Mul­tiplier (LM) test-statistic . An introduction to the LM-test within a larger context can be found in Buse ( 1982) . The idea for the LM-test originates with Rao (1948) , there called the 'score test' , and with Aitchinson and Sil­vey (1958). An application within the context of IRT models can be found in Glas and Verhelst (1995), and Glas (1997, 1999). In general, to compute the LM-statistic restrictions on parameters are relaxed. For instance, one may release the restriction that ai is equal for boys and girls, thereby replacing 
ai with aib for the boys, and aig for the girls. Denote the U new parameters by r The likelihood function is then evaluated at the maximum likelihood esti"i°nates of the original parameters, and the U new parameters e at their latest values. In the example aib = aig = ai . The LM-test statistic-can then be expressed as 

(53) 

where the superscripts within parentheses denote order of differentiation w.r.t. the parameters of the relaxed model, and superscript T denotes trans­position . LM is x2-distributed with degrees of freedom equal to the number of relaxed restrictions. To obtain an especially simple procedure for the calculation of the LM statistic one focuses on implicit (0 or 1) or explicit constants in the model, and changes their status from constant to a variable parameter in the like­lihood function. By this procedure all original parameters remain in the relaxed model. In general this is not the case. For instance, above ai was replaced with aib and aig • Because the likelihood is evaluated at the maxi­mum likelihood estimates of the original parameters, the elements of the first 
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derivative corresponding to the original parameters are all equal to zero. Be­cause all original parameters remain in the relaxed model this simplifies the computation. Denote the complete vector of original and new parameters as zr. = (�, {), and select with F(�) the vector of elements of the first derivatives of Ml with respect to the elements of �- Likewise I(�, e) selects the part of the observed information matrix I with the rows for �,-and the columns for 
f Then 

LM = F({f w-1 F({) , (54) 
with 

(55) 
where I( �, �)-1 is already computed to obtain standard errors of the param­eter estimates. If original parameters are replaced by new parameters by relaxation of restrictions, this simplification is not obtained. In case the LM-test shows that the model is violated for a certain item, one may evaluate the size of the misfit with the first Newton-Raphson step of the new parameters, were the estimation continued after releasing the restrictions. These first steps are given by F({)Tw-1 . To calculate an LM-statistic for some or all parameters of an item, the respondents must be grouped independently of the response on the that par­ticular item. This can be accomplished by using an independent background variable, like gender or parental educational level, but also by grouping the respondents into groups of homogeneous ability. The division into groups of homogenous ability must also be accomplished independently of the item. For that purpose the procedure developed in Verstralen ( 2000) can be used. There a computationally cheap procedure is developed to obtain an EAP­estimate of the person parameter that is independent of the item. As noted in Verstralen ( 2000) the augmented model with group parame­ters is undetermined. Therefore, we introduce the restriction 

(56) 
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Diagnostic distractors 

Suppose that in a certain subject matter a few main fallacies can be identified. And, moreover, suppose that a test with multiple choice questions can be constructed, where each distractor in an item relates to one of these fallacies. Then the DM-model allows, in principle, to identify the persons with a certain fallacy. If a person is a victim of a certain fallacy, and does not know the correct response, he has a relatively large probability to put his taws on the option associated with that fallacy, and a low probability to put his taws on the other options. More technically, suppose first, without loss of generality, that for all items the index of the option- indicates the type of fallacy. Now, let m be the option-index that represents the fallacy of a certain subject. Then we may assume that for all items it holds that when this subject does not know the correct response he is inclined to put his taws on m, at the cost of the other distractors. Now, if ,{) is estimated only on the basis of the number of taws put on distractors m, a lower estimate for ,{) is expected than on the basis of his complete vector g. Because m is a distractor its trace lines tend to be decreasing in ,{) with the implication that the lower ,{) the higher the expected number of taws put on m. For the same reason the number of taws put on distractors other than m will be lower, and a higher estimate for ,{) is to be expected if it is estimated only on the basis of the other distractors 
j =J m. Because the marginal distribution of ni for the DM and the BB model as well are given by Formula ( 12), we have that 

This results in a posterior distribution for ,{) 
h( r) ; �lni) oc g( ,{)) IJ Pi ( nii ; ,{)), (58) 

i 

which enables to calculate an EAP-estimate for ,{), and its posterior variance, denoted respectively by ,{Ji and s; , on the basis of the numbers of taws put 
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on options j. Denote the EAP-estimate and its posterior variance for {) on the basis of the complete vector JJ: by {) c and s�. The standardized difference 
dj = f)c - ,,Ji (59) ✓s2 + s� 

C J informs about the extra attraction of distractor j above that expected by the model. The larger di, the more extra attraction option j has for the subject. Because the data for {Jc contain the data for { Ji their estimates are conditionally positively correlated given {). Therefore, the variance of di under. the model is smaller than 1. Consequently, a significance test based on the assumption that dj is standard normal distributed will turn out to be conservative. In the last part of the section below we will put this idea to a test. 
A simulated example 

As an example a 200 record data set was generated for the DM-1r (3 model ( 'Y = 1), with responses on a test with 20 four-choice items (J = 4) . Responses were generated for 20 taws as well as for 1 taw ( converted to binary scores). The twenty items all have the same parameters, µ = 2.0, a = 1.0, {3-:­-0.5, 0.0, 0.5. The distribution of {) is the standard normal. The 20 ta.w response data set was analyzed using the DM-1r(3 model, and the binary data set using OPLM (Verhelst , a.o., 1995). With the DM model EAP-estimates of {) were obtained, and with OPLM WML-estimates of {}_ Both are plotted against {), and shown in Figures 6, and 7. The difference in accuracy is so large that it clearly shows in the scatter plots. The correlation EAP-{} equals 0.89, and the correlation WML-{} equals 0.76. The corresponding reliability coefficients are 0.80 and 0.58. To test whether the Lagrange multiplier test is sensitive to a particular model violation we also generated a 200 record data set with µ of item 1 dependent on {) 
(60) The other parameters are equal to the above simulation. The results for item 1 are shown in Table 1. 
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Figure 6: Scatterplot of DM-EAP estimates of fJ against their true values, responses: 20 taws, µ = 2.0. 
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Figure 7: Scatterplot of O PLM-WML estimates of {} against their true values, binary responses. 
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Table 1 Calibration and Test results for item 1 
Item Grp N Par Estimate StErr NR-Step LM-Test (df ) 8 1 114 µ 1.483 0. 108 -0.500 24.077 5 a 0.705 0. 147 -0.299 

/31 -0.703 0.350 0. 166 
/32 -0.290 0.263 -1 . 177 {33 0.293 0.231 0.013 2 86 µ 0.500 a 0.299 
/31 -0. 166 
/32 0.177 {33 -0.013 

As Table 1 shows, the model violation on µ
1 

is clearly detected. The NR­Step for the lower group brings the estimate right on target, but for the higher group the estimate is too low ( about 2 instead of 3). Moreover, the violation of µ1 has its main effect not only on the estimate of µ1 , but also on the estimate of a1 . For the lower group (with a lower µ1 ) ,  also an appreciably lower value for a1 is suggested, than for the higher group. The estimate of the vector {3 seems not to be affected by the model violation. Of the other 19 itemsjust one item had a LM-test statistic with a 5%-significant p--value (p=0.032). The sum of the LM-statistics has a p-value of 0.055. Under the assumption that the LM-statistics of the items are independent x2-distributed, their sum is also x2-distributed, with the sum of the degrees of freedom. This assumption is, not exactly true, but it is approximately so. Although one of the 20 items was detected to clearly violate the model, this overall statistic with 200 records just raises some suspicion. To test the idea about the diagnostic value of distractors that represent a certain fallacy, the same data set was generated, as used above, except for the last ten subjects 19 1 through 200. They were assumed to be a victim of a certain fallacy. Subject 19 1 suffered of the fallacy represented by distractors 1, subject 192 by distractors 2, 193 by 3, 194 again by 1, and so on. Their data were generated by changing their values for 7rj , j > 0, as follows 
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7rm (1 - no) (1.0 - c) c 
7rN,m - (1 - no) J _ 2, (61) 

with c = 0.05, and m the index of the fallacy. So the probability to obtain a correct response was left unchanged, only the relative emphasis on the distractors was altered in favor of the fallacy. These data were analyzed with the DM-model and for all subjects the value of di was tested at the one-tailed 5% significance level. If di > 1.65 this was indicated by a -j and if di < -1.65 this was indicated by a j. Just 6 of the normal 190 subjects showed one significant option. This shows that the test is rather conservative. Of the ten last subjects with one fallacy, all were marked, six of them for all three distractors, three of them for two, and one subject just for one distractor. Eight of them with the -j for the fallacy distractor. For instance subject 192 was marked by 1 -2 3. Indicating that {)2 for this subject was much lower than {) c ,  and {) i for the other two distractors much higher than {Jc · We may conclude that the process works for clear-cut fallacies . 
Discussion 

It is an open question in what way one can obtain valid data for the model . What points should be stressed in an instruction? What is an optimal choice for N the number of taws? If implemented in a CBT environment, what are the essential ingredients in a comfortable interface? One could for instance be tempted to implement the attachment of weights to options by having the subject draw lines behind the options, where the length of the line reflects the subjectively perceived correctness. Moreover, it would be tempting to consider these data as continuous, and therefore, con­sider the data as an instance of N = oo. This is especially tempting because the model predicts the highest information gain for N = oo. In that case the limit for N ---+ oo of the DM and BB models would apply, which, as discussed in Section 2 is just respectively the Dirichlet or the Beta model. However, from Formulas ( 3) and (10) it appears that the probability for qi = 0 van­ishes. This means that if just one subject draws a line of length O behind just one option, the model cannot be estimated, because the whole data set has probability zero under the model. And one is bound to observe lots of 
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lines of length zero, because for the better subjects some options simply are completely wrong . This observation does not mean that one should not have subjects draw lines behind options. However, one should be aware that although subjective lines may seem continuous, they have not infinite subjective resolution. For instance, subjects will not perceive a difference between a pile of 30 taws and a pile of 31 taws, or a line of 30 millimeters and a line of 31 millimeters, when not shown side by side of course. Therefore, the lines given by subjects should be transformed to finitely accurate measures, as one does with length measurement, for instance rounded to the nearest mm, depending on the measuring instrument . To do this properly, research is needed as to the subjective resolution. Then the 'continuous ' line lengths are to be converted to an appropriate number of taws. This research could, perhaps, be done within the framework of the DM, and BB models itself . One could, for instance, analyze a 'continuous' data set with a range of resolutions, such as one taw per 2 mm, per mm, per half a mm, etc. "When the resolution of the analysis transgresses the resolution of the subjects, one would be trying to extract more information from the data than it contains, which should be balanced by a decrease in the estimates for 
µ. As an aside remark, this phenomenon will, in general, show up when the number of taws to distribute does not- fit the resolution of the subject. Another, be it less elegant, solution to the 'zero'-probability problem could be to exclude zero line lengths, by giving each line a minimum length, for instance 0.025 of the maximum length. With a four option MC question under the DM-framework this consumes 10% of the total weight to be dis­tributed. "What a reasonable minimum line length should be and what its influence, is to be investigated. 
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Appendix A : Derivatives of Q(,\,,\*) 

Denote with 
(62) 

Let p_ be a vector of parameters then the nth order derivatives of Q have the following form 

with m = D for the DM model and m = B for the BB model. As already given in Formula ( 8) we have that 

(64) 
for the DM model , and 

for the BB model, where CDM and CBB are constants independent of the parameters. Now let >..k be a parameter of 1[, then for Q we have the parameter vector (µ,�) - Furthermore , using subscript D for the DM model and B for the BB model let 
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'l/J' (x) 

n · -1 

'l/J'ni - 'lj;1(µ1ri) - 'lj;1 (µ1ri + ni) = t 1 
2 (A&S 6.4.6) 

k=O (µ1rj + k) 
'lj;�i - 'l/J'(µ(l - 1ri)) - 'l/J'(µ(l - 1ri) + N - ni) 

,/in - ,/!(µ) - ,P(µ + N) ( � - � µ! k) ' 
'lpj - 'lpDj - 'lj;Bj 

'l/J'; - 'l/J'nj + 'lj;�j 

then the first and second derivatives of lnpDi are 

a 

a>..k lnpni -

(:J 1npn; 
j 

(66) 

(67) 

L lnpn · - - � 7ft) ('l/Jni + µ1ri'l/J'ni) = a>.k µ i - µ � '1rj1rt)'l/J'ni 
J J 

_ """' (k,l) nf, _ 2 """'  (k) (!) n// µ L..J 1rj '1-'Dj µ L..J 7rj 7rj '1-'Dj · 
j 

The derivatives for the BB model can be presented very similar in appearance, with an additive correction for the derivatives w.r.t. µ 
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Derivatives of 1r:: 
In this section not mentioned entries are equal to 0 .  Let 

J<cp) - � f, and t<cp,'1/J) • -8-J 
a� a�a� 

Djk l for j = k, and Djk = 0 for j =/:- k 

(o - 0 
(j - exp( cn9 + f3j) , (j > 0) 

a/3 T ·  
(a,/3j ) a-y ....:....  (a,ln -yj) - Tj , Tj - Tj , J 

S - Sr · L Tk 
k=O 

Bar - L TZ 
k=l 

81313 - L T�/3 

k=l 

For instance �k with k =/:- l equals 0. Then 
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(;°) - ,,J(j 
(70) 

,y,
j) 

'j 

�aa ..... -
ga/3j -
ga"'f; -

(.�) 7ro 

(>.) 
7rj 

-
,.,..(>.)';:;' - ..,.. . =(>-) I j '-' I J '-'  

32 

(>.,1t) ?ro -
ac>-,1t)a - 2a<>-)3(x;) 

Applying the Formulas for the first derivatives we have 
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And the second derivatives of 1[ are given by 
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Appendix B :  The expected value of ln(q) , ln(�) ,  
and ln( 1�q )2 with q Beta distributed 

Below we give a proof of results part of which was already proved in a different way by Verhelst ( 1998). Denote t-0 f(iJ) as f'(iJ) , :
iJ 

lnp(q; iJ) as (lnp)' (q) ,  and let 1r = 1r(iJ) be a function of iJ, and let q be Beta{} • Beta(µ1r, µ(l -1r)) distributed. (Note that for Beta(a, {3) , µ = (a +  {3) , 1r = °'��) - Then we have that 
lnp(q) = (µ1r - 1) ln q + (µ(l -1r) - 1) ln (q - 1) - c( iJ), (74) 

with 

Now 

with 

Because 

c( iJ) = lnr (µ1r) + lnr (µ(l -1r)) - lnr(µ). 

(lnp)' (q) = µ1r' ln -1 q • - c'( iJ), 
- q 

£-0 [(lnp)' (q)] = 0, 
where £{} denotes expectation over Beta-0 = p(. ; 19), we then have that 

Therefore, 
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£19 ln q = 'I/J(µ1r) - f (µ) , (80) 

where f(µ) at most depends on µ. Using Formula (79 ) and taking the limit for 1r -+  0, and therefore also for q -+  0, we find that f(µ) = '1/J(µ) . Further, we have that the expected information about {} equals 

e, [ ( (Inp)' (q) ) '] = e,, [ (µir' 1n 1 � q - c'(i'I) ) '] (s1) 

= (µ1r1)2 Var,9 [1n 1 � ql , 

which also equals 

where 

so that, using Formula (79 ) ,  we have that the expected information about {} is given by 

and that 
-£19 [(lnp)" (q)] = (µ1r')2 ('I/J'(µ1r) + '1/J'(µ(l - 1r) )) , (84) 

Var19 [1n -q-] = 'I/J' (µ1r) + '1/J' (µ(l - 1r)) .  l - q 
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Appendix C: Limits of IB
B 

/InM for 1ro ----+ 0, 
and 1r0 ----+ 1 

From Formula (22) we have that 
IBB ( {}; µ, N) I:j (µ7rj) 2 £.ab(nj, 11"j) lvM ( {} ; µ, N) = 

I:j (µ7rj) 2 £,9d(nj, 11"j) . (86) 
Assuming from now equal trace lines for the distractors, and using I: 11"j = 1, and I: 7rj = 0 this gives 

IIrn ( {} ; µ, N) (µ11"�)2 (£,9b(no, 7ro) + -i:r£,9b(n1, �)) IDM({} ;µ, N) - (µ1r�)2 (£,9d(n0, 1ro) + 1�1 £,9d(n1, 1;:f)) • 
(87) 

Denote by pj(n) the Beta-Binomial( {};µ, N) probability that n taws are put on option j .  Using Formulas (14) and ( 15) and realizing that for 1r0 � 0 in £,9b(no, 1ro) and £,9d(n0 , 1ro) as well the summand Po ( 1) �1 ) dominates it 
µ1ro dil £ 11 th t 1. 1;1B (1'J;µ,

N
} l rea y o ows a 1m1ro--+0 r- (,{}· N} = . 

DM ,µ., In the same vein for 1r0 � 1. First note that 

and therefore, that 
(88) 

(89) 

For 1r0 � 1, we have that for I'}rn the sum is dominated by 2p0 ( N  -1) (µ(l�1ro) )2, one from C,9b(n0, 1r0) and the same surnmand from e,9b(n1, 1;:f) ,  w�ereas IDM is dominated only by Po (N - 1) (µ(l�rro) )2 from C,9.d (n1, 1;:f) ,  d ·t £ 11 th t 1· 188 (1';µ,N) 2 an 1 0 OWS a lmrro--+l J• ( 9. N) = · DM \ ,µ, 
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