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Abstract 

Elementary symmetric functions are the coefficients of the powers of x in 

the expression fl (l+eix) . Functions where all £ s are positive, are 
i•1 

considered here. These functions, with their first and second derivatives, 

must be evaluated in, for example, estimating so-called item response models. 

The evaluation is a notoriously difficult thing to do. As the estimation 

procedures are iterative, a time-efficient algorithm is called for. In this 

report, a new algorithm is developed and compared with the well-known sum 

algorithm. It is shown that the new algorithm reduces computing time to a fair 

amount, and uses hardly more core memory than is needed to store the results 

wanted. 

Keywords: conditional maximum likelihood estimation, divide-and-conquer 

procedure, numerical stability. 





Introduction 

In this report a new algorithm is described for computing elementary 

symmetric functions. such functions are used extensively in item response 

models, such as the Rasch model ( Fischer, 1974; Rasch, 1960; Verhelst, Glas & 

van der Sluis, 1984). Specifically, these functions, together with their first 

and second derivatives, are needed in deriving conditional maximum likelihood 

estimators and their standard errors in these models. As the number of 

functions needed grows rapidly with the number of arguments, an algorithm is 

called for which cuts down computing time, without significantly increasing 

core requirements. 

To set the stage, consider the one-parameter logistic model for 

dichotomous items, the so-called Rasch model. It is characterized by the item 

response function fvi : 

{ �V' ei > 0 

fvi Prob(Avi 
1 I ev

, eJ 0 ve
i 1, ···, k - - = 

1 +8ve i 

1. = 

V= 1, ···, N 

where Avi is a binary random variable, and 8v and ei are subject and item 

parameters, respectively. This function gives the probability of a '1' 

response by subject v with ability parameter 8v, to item i with easiness 

parameter e i . In estimating the i tern parameters, the subject parameters can 

be considered as nuisance parameters. conditional Maximum Likelihood 

estimation (Andersen, 1973) maximizes the likelihood function, conditional on 

minimal sufficient statistics of the nuisance parameters. It can be shown 

(Fischer, 1974) that the likelihood equations for conditionally estimating the 

item parameters in the Rasch model can be written as 

k 
a - -"' 

. 1 L., 
I=O 

i-1,· .. ,k 

where a.i is the number of correct responses to item i, tr is the number of 

subjects having precisely r correct responses, � is the vector of item 

parameters, yr (.t_) is the elementary symmetric function of order r on the k 

arguments .t., to be defined below, and y ��i (.t_) is the elementary symmetric 
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function of order r-1 on the k-1 arguments e1 ... , e i-l, e i+l' ... , e k. This 

last function is the first derivative of Yr(L) with respect to £
i . 

To have not only estimates of parameters, but also of their standard errors, 

second derivatives of the elementary symmetric functions (which are elementary 

symmetric functions themselves) are needed. computation of elementary 

symmetric functions poses a notoriously difficult problem. The difficulties 

have to do not only with numerical instability, but also with very demanding 

core use and computing time. 

The algorithm to be presented focuses on the computation of second 

derivatives of elementary symmetric functions. It turns out that first 

derivatives, and the function values themselves, are got very easily as a 

byproduct of the computations. In this article, emphasis is given to computing 

time, but core requirements will be considered, too. 

Elementary Symmetric Functions 

The elementary symmetric function of order s, defined on k real arguments 

■ ■ I I is defined as: 

In the applications considered here, all arguments are strictly positive. 

A deceptively simple algorithm to evaluate this function is: 

determine all combinations of s out of k arguments; 

multiply all arguments of each combination; 

sum the products. 

of course, the deception lies in the first step; this is a very heavy 

combinatorial task. In case all arguments are positive, a numerically stable 

algorithm to evaluate the functions is the so-called sum algorithm 

(Gustafsson, 1980). This algorithm uses the recursion 

( 1) 

where s = l(l)k and i = s(l)k. we define y
9

(£1, ... , ek) = 0 for s< O and s> k. 

The sum algorithm boils down to computing an upper triangular matrix T, whose 

last column contains the function values of interest: 
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j 

Lee = ti,j-1 + ei (i=l) 
c-1 

t ij - ti,j-1 + titi-1,j-1 (1 < i < j) 

j 

IT ec = tj-1,j-l tj (i=j) 
C-=1 

Each element of the matrix is computed by ( 1), which implies one addition and 

one multiplication. In this article, the term unit is used to denote a 

combination of one addition and one multiplication. since the costs of the 

computations do not depend on the values of the arguments £
1

, ... , ek
, but 

only on their number, k, we will denote the elementary symmetric function of 

order s, defined on k arguments, by y.(k). 

The upper triangular matrix mentioned above contains ½k(k+l) elements. The 

computation of each element costs one unit, so, computing all elementary 

symmetric functions for k arguments requires ½k(k+l) units. 

The first derivative of Oy
q

(j) with respect to t1 
is equal to the 

elementary symmetric function of order q-1 for all arguments except e i; this 

function is denoted by y )��1 , (j-1) . Leaving out one argument at a time, 

computation of all first derivatives with the sum algorithm requires ½k2 (k-1) 

units. In the same way, it can be shown that computation of all second 

derivatives with the sum algorithm takes ½k(k-1) {½ (k-1) (k-2)} units. so, the 

total costs M
0 

of computing the elementary symmetric functions with their 

first and second derivatives by means of the sum algorithm are: 

Mo =½ k(k+l) +k{½ (Ok-1) k} + {½ k(k-1)} {½ (k-2) (k-1)} =¼k4 -½k3 + (5/4) k2 

This number for the total costs will be used as a benchmark in evaluating the 

costs of our algorithm. 

A New Algorithm 

The new algorithm is based on a fairly simple generalization of the sum 

algorithm; it inherits from it its numerical stability. Its main advantage 

obtains by computing intermediate results once and storing them for later use. 

The algorithm consists of three parts: 

the construction and combination of building blocks; 

the derivation of intermediate results from the building blocks; 

the derivation of the final result from the intermediate results. 
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The final result is the set of elementary symmetric functions 

{y8 (k):s=l(l)k}, the k first derivatives{y!11 (k-l); s=l(l) (k-1), i = l(l)k}, 

and the �k (k-1 ) second derivatives {y!1 •1> (k-2); 

s = l(l) (k-2), i ,j=l (l)k, i<j}, 

The construction and combination of building blocks 

The algorithm starts with partitioning the k arguments e1 , . .. , e
k in p 

groups, each group containing at least two arguments. rt is immaterial whether 

the number of arguments in each group is the same; however, in order to keep 

the computation of the costs simple, it will be assumed that each group 

contains exactly m arguments, that is, k = mp. 

For each of the p groups, the m elementary symmetric functions and their 

m(m-1 ) first derivatives and �m (m-l)(m-2) second derivatives are computed with 

the sum algorithm. From the derivation of M0 above it is seen that these 

computations require: 

S =p[¼m4 -½m3 +(5/4)m2 ] 

units. Each set of elementary symmetric functions (excluding first and second 

derivatives) pertaining to one group of m arguments, is called a building 

block. The question which values of p and m are optimal with respect to costs 

will be taken up later. 

The sum algorithm given by (1 ) can easily be generalized to the 

combination of elementary symmetric functions, that is, building blocks. 

consider y1(k
1

) and YJ(k
2

), for i = O(l)k1 and j=O (l)k2 , elementary symmetric 

functions with k1 and k2 
mutually exclusive arguments, respectively. Then the 

following recursion can be used to combine building blocks (Fischer, 1 981 ): 

( 2) 

where a=max(O,g -k2 ) and b = min (g,k1 ). Each product y1 (k1 )•y
g
_1 (k2 ) is one term 

of Y
g

(k1+k2 ). As i =O (l)k1 and g-i = k2 (-l)O, (l+k1 ) (l+k2 ) terms must be added; 

so the computation of all Y
g

(k
1
+k

2
), g=O (l) (k

1
+k

2
), requires (l+k

1
) (l+k

2
) 

units. 
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The construction of intermediate results from the building blocks 

In this section, the word "algorithm" means only the part of the whole 

algorithm in which intermediate results are constructed from the building 

blocks. It concerns the combination of elementary symmetric functions for all 

p groups of m arguments. some notation is needed to describe this part of the 

algorithm. 

Let the generic symbol G ( 1) denote a building block, that is, some set of 

elementary symmetric functions of one group of m arguments. Let the symbol EB 

denote the combination of two sets of gamma functions as defined by ( 2), then 

( 2) can be written symbolically as G ( 2) = G ( 1) EB G ( 1) ; thus the argument of G 

is the number of building blocks G is based upon. It is clear that EB is a 

conunutative and associative operation. Hence G(n) = G(a) EB G(b), where a+b=n 

for all positive integers a and b. 

The reader is invited to have Figure 1 of the Appendix at hand when 

reading the following passages. That Figure depicts the algorithm for 

the case p = 1 . 

The algorithm has p steps. In step i, p-i sets G(p-2) and one G(p-1) are 

constructed. None of these sets contain the i-th group of arguments. Moreover, 

in each set G (p-2) , one other group of arguments is excluded, viz. one of the 

groups (i+l)(l)p. 

For i>2, the iteration step i starts with a G(i-2). This set is the 

combination of the building blocks based on groups 1 through i-2. For the 

cases i = 1 and i = 2, dummy sets G(-1) and G( 0) are defined. While these sets 

formally contain m+l elements, they are actually empty. To handle these 

dummy sets, the definition of EB is extended as follows: G(-1) EB G(O) = G(O) 

and G(O) EB G(l) = G(l). (Using these dummy sets as if they contain m+l 

elements, implies that the costs of our total algorithm will be somewhat 

overestimated; this overestimation is negligible, however.) so, the first 

iteration starts with G(-1); all other iterations start with a G(i-2) which 

has been computed in the step before the current one. 

In step i,  [ (p-2) -( i +1-3) ] = (p-i) combinations are needed to get the 

first G(p-2). In the j-th combination, a G(i+j-3) and a G(l) are joined. (The 

intermediate results G(i+j-3), 1 < i+j <p, are kept, because they are used 

presently. Therefore, these results are denoted by G* (i+j-3).) Hence, to come 

from G(i+l-3) to the first G(p-2) requires 
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Cu =1!! (l+m) [l+(i+j-3)m] 
j=l 

units. As there are no combinations to perform when i=p (the starting set is 

a G(p-2) ), all combinations leading to the first G (p-2) in every step, will 

cost: 

units. 

For i> 1, the G (i-2) started with is the result of the first combination 

of step i-1 (see the arrows in Figure 1 of the Appendix). The first 

combination of step i concerns the arguments of the (i-1)-th group of 

arguments: the following combinations involve the groups p, p-1 , ... ,i+2 

successively. so the result G(p-2), reached in the i-th step of the 

algorithm, where i<p, contains the elementary symmetric functions of all 

groups except the groups i and i+l. 

To summarize, the cost c1 comprises all combinations up to and including 

the first box in every column in Figure 1, except the last column. 

In step i, where i<p-1 , there are p-i-1 intermediate results 

G•(i+j-2), j=l (l) (p-i-1). Each of these is combined with a 

G[(p-2)-(i+j-2)] •G(p-i-j) to get the other G (p-2). These p-i-1 combinations 

require: 

p-J..-1 
C

2 i = � [1+(i+j-2)m] [l+(p-i-j)m] 
J=l 

units. so, the total costs of combinations of this kind are: 

units. 

To combine the intermediate results G• (i+j-2) with a G(p-i-j), for 

j = l (l) (p-i-1), these latter sets must be computed first. Now, if j =p-i-1, a 

building block G(l) can be used. So the sets G (p-i-j) are computed in the 

reverse order: j= (p-i-1) (-1)1, and every combination adds a G (l) to the 

result of the foregoing one. (In Figure 1 ,  these combinations appear under the 

first box in each column, and do not have a box around them. ) In step i these 

combinations obviously require: 
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p-.,i..-2 

C
3i 

= L (l+m) (l+jm) 
j•l 

units. For all steps involving this kind of combinations (i < p-2) , the costs 

are: 

units. 

The sum C1 +C2 +C3 represents the costs of computing all sets G(p-2) . 

(For i = 3 the allocation of the costs to the combinations is shown in Figure 

2. The meaning of cost B is explained below.) Now it will be shown that each 

G(p-2) is computed just once. 

The G ( 1) started with in step i ( i < p-1) concerns the arguments of group 

i+l, and this set is augmented successively with a G(l) based on the 

arguments of the next group up to the (p-l) th. For each j in the range 

(i +2) (1) (p-1) , the set G(p-i-j) is combined with the kept result G* (i+j+2) , 

giving rise to a set G (p-2) which is not based on the arguments in groups i 

and j. For each i, p-i-1 sets G(p-2) are computed this way. Together with 

the first G (p-2) based on the arguments of the groups i and i +1 ( see above) 

the i-step of the algorithm yields all sets G(p-2) with the arguments of 

group i excluded; moreover, in each of these G(p-2) one other group 

j (j= (i+l) (l) p) is excluded. so, all G(p-2) together contain exactly all 

function values with every pair of groups of arguments excluded once. 

To compute the p sets G (p-1) , in each step i, i = 1 ( 1) (p-1) , of the 

algorithm a G (l) is combined with the G (p-2) computed last. That G(l) is 

based on the p-th group of arguments; the G(p-2) used on entering the last 

step will be combined with the G ( 1) based on the (p-1) -th group of arguments. 

In this way, all G(p-1) are computed. These computations require the same 

number of unit costs in each step, the costs of combining a G(p-2) and a 

G (l) . so, computation of all G(p-1) requires 

B =p(l+m) [l+(p-2)m] 

units. 

In the last step of the algorithm, when i equals p, the G(l) which is 

based on the p-th group of arguments will be combined with the computed 

G(p-1) . The result is the one and only G(p) , the set of all elementary 

symmetric functions. This last result requires 
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A= (l+m) [l+(p-l)m] 

units. 

The construction of the final result from the intermediate results 

The final result is the set of all first and second derivatives of the 

elementary symmetric functions, as well as the functions themselves. The final 

result can be thought of as a symmetric kxk-matrix, each cell of which 

contains an ordered set of elementary symmetric functions {y<i,j) (k-2)}, except 

the diagonal cells� these contain sets {y <1> (k-1)}. This matrix has the 

following block structure. The i-th diagonal element consists of the first 

derivative with respect to the i-th argument e
1

. As explained earlier, the 

first derivative of some Y
q

(k) with respect to e
1 

is equal to vi� (k-1), the 

elementary symmetric function of order k-1 for all arguments except £
i

. 

Around the diagonal there are p block matrices. Each of these contain the 

second derivatives with respect to two arguments, e
i 

and ej, from the same 

group of m arguments. The remaining block matrices, which do not touch the 

diagonal, contain the second derivatives with respect to two arguments, ei 

and ej, which are taken from two different groups of m arguments. 

computation of the diagonal elements 

The i -th diagonal element is computed by combining the function value 

y W (m-1) with a G (p-1); this requires [l+ (m-1)] [l+ (p-l)m] =m (l+k-m) units. 

As there are k diagonal elements, computing the diagonal requires 

D = km (1 +k-m) 

units. 

computation of the diagonal block matrices 

Only the off-diagonal elements of the diagonal block matrices must be 

considered here. Take some function y �i,jl (m-2) . We combine the function value 

y �i,j) (m-2) , where i and j point to arguments in the same group of arguments, 

with a G (p-1). This requires [l+ (m-2)] [l+ (p-l)m] = (m-1) (l+k-m) units. As 

there are ½m (m-1) off-diagonal elements in a diagonal block matrix, 

computation of such a matrix requires ½m (m-1)2 (1+k-m) units. so, the 

computation of all p block diagonal matrices requires 
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E = ½pm(m-1) 2 (l+k-m) = ½k(m-1) 2 (l+k-m) 

units. 

computation of the off-diagonal block matrices 

The computation consists of four steps: 

- Pick a yr1 (m-1) and combine it with a G(p-2). This takes 

[l+(m-1)] [l+(p-2)m] =m(l+k-2m) units. 

- Combine the result of the first step with a y�1 (m-1). Then the (i,j)-th 

cell of the block has been determined, at a cost of 

[ 1 + (m-1) ] [ 1 + (p-2) m+m-1 ] = m (k-m) units. To fill one complete row of the 

block matrix requires m2(k-m) units. 

- To compute all rows of the block matrix, the foregoing two steps must be 

repeated. This takes m[m(l+k-2m)+ m2(k-m)] units. 

- As there are ½p(p-1) block matrices to fill, a total of 

F = ½p (p-l)m [m(l+k-2m) +m2 (k-m)] 

units is required. 

Results 

For a selection of values of k and m, the costs of our algorithm are 

expressed as a percentage of the units required by the sum algorithm, that is, 

as a percentage of the value of M0 • The results are collected in Table 1. 
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TABLE 1 

The costs of the new algorithm, expressed as a percentage of the costs Mo of 
the sum algorithm, for several values of k and m. The lowest value in each 
column is underscored. 

m\k 18 24 36 54 72 96 144 

2 45.3 36.6 27.5 21.3 18.1 15.7 13.3 
3 44.9 35.7 25.8 18.8 15.1 12. 3 9.5 
4 39.0 27.9 15.7 12.4 9. 1 
6 58.4 47.4 34.4 24.5 19.1 14.8 10.4 
8 55.3 23.1 17.9 12.4 
9 70.9 44.1 32. 0 25.1 13.5 

12 68.5 52.1 30.9 24.2 16.9 
16 30.2 21.3 
18 66.3 51.0 41.4  23.4 
24 50.2 40.8 29.5 

:rn Table 1, only those cells are filled where m divides k. :rt is clear 

that for a large range of values of k, a group size m • 3 or 4 will do. For 

k = 96, our algorithm is about eight times faster than the sum algorithm. :rt 

is illuminating to see the distribution of unit costs over the three parts of 

the algorithm. :rn Table 2 this is done, for several k and the associated 

fastest m. The costs for the building blocks consist of s, those for the 

intermediate results consist of c
1
+c

2
+c3+B+A, and those for the final result 

consist of D+E+F. 

TABLE 2 

Splitting up of the costs (in percentages) for the three parts of the 
algorithm for several combinations of k and m. 

k 18 24 36 54 72 96 144 
m 3 3 3 3 3 3 4 

building blocks 1.0 . 5  . 2  .1 < .1 <.1 < .1 
intermediate 12.0 14.4 18. 7 24.0 28.6 34.0 25. 0 
end result 87.0 85.1 81.1 75.9 71.3 66.0 75. 0 

clearly, computing the final result is the most expensive part of the 

algorithm. Especially the parts E and F, which obtain when computing second 

derivatives, are rather expensive. :rf second derivatives are not needed, the 

present algorithm is not efficient. In this case, one can do better by using 

an efficient algorithm which generates the intermediate results. In Figure 3 

of the Appendix, such an algorithm is depicted for p = 7. Essentially, it 
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II 

corresponds to one step of our main algorithm; therefore, we call it the 

reduced algorithm. In Table 3, the cost of the reduced algorithm is compared 

to that of the sum algorithm, similarly reduced to the symmetric functions and 

their first derivatives. 

TABLE 3 

The costs of the reduced algorithm, expressed as percentage of the costs of 
the reduced sum algorithm, for several values of k and m. The lowest value 
in each column is underscored. 

m\k 18 24 36 54 72 96 144 

2 52.7 44. 2 35. 4  29. 3  26.2 23.8 21.5 
3 52.4 43. 0 33. 0  26. 0 22.4 19. 6 16.8 
4 45.8 34.2 21.7 18.5 15.2 
6 67.5 54.5 39.9 29. 2  23.6 19.3 14.8 
8 64.1 27.0 21. 6 15.9 
9 84.0 50.5 36.5 28.9 16.7 

12 81.6 61.0 34.9 27. 4 19.6 
16 33. 7  23.8 
18 79. 3 59. 1  46.9 26.0 
24 58.2 46. 1 32.6 

The gain in computing speed requires a larger amount of memory for the 

computer implementation. 

G(p-1} and G(p-2} which 

We need memory to store all G(l)'s and all sets 

are needed in one single loop of the algorithm. 

However, we need no more scratch memory than when using the sum algorithm. Let 

n be the size of the memory cell needed to store one number. Then a G(l) 

takes n(l+m) memory cells; a G(p-1) takes n[l+(p-1)] cells, and a G(p-2) 

takes n[l+(p-2)] cells. so, in total we need: 

M(m) =np(l+m) +np[l+(p-1)] +½.np(p-1) [l+(p-2)] +n(l+k) 

memory cells. The last term is the scratch memory required. For m = 3, 

M(3) = nk(k2-2k+27) /18, which rapidly exceeds all available core memory with 

growing k. An elegant solution for this problem is to store each G (p-2) on 

background memory as soon as it has been computed. Then, for m = 3, not more 

than nk(k+2)/3 memory cells are needed. The within group derivatives are 

stored successively in the same memory location, as they are needed only once 

in computing the final result. 
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conclusion 

In the preceding sections, an algorithm has been developed to compute the 

elementary symmetric functions together with their first and second 

derivatives. The basis of the algorithm consists in partitioning the arguments 

in p groups, to compute the symmetric functions within the groups, and to 

combine these within group functions in some sort of half-products, the sets 

G(•). If only the elementary functions are needed, it is easy to show that the 

fastest partition is given for p = l, i.e. , the algorithm coincides with the 

sum algorithm. However, if first derivatives are required along with the 

functions, a reduction in computing time of about 80% with respect to the sum 

algorithm is realized if the number of arguments is of the order of one 

hundred. If second derivatives are required also, the percentage reduction is 

almost 90 for k=lOO. The computational costs are derived only for the case of 

p groups of equal size. In the case of unequal group sizes, the total cost is 

dependent on the specific order in which the combinations of the sets G (•) are 

taken, so that it is possible that the maximal reduction rates are higher than 

the ones reported in Tables 1 and 3. Some experimental trials however revealed 

that the gain will only be marginal. So the search for an optimal partition 

has been abandoned. 

As to the accuracy of the results, it should be noticed that the only 

operations performed by the algorithm are additions and multiplications of 

positive numbers. Moreover, the number of operations required to arrive at a 

specific function value is the same as in the sum-algorithm. Hence, the error 

analysis presented in verhelst, Glas and van der Sluis (1 984 ) on the sum 

algorithm is valid for our algorithm too. Specifically, this means that the 

number of decimal digits lost through rounding errors is at most log10 (2k), 

irrespective of the partition used. 

The price to be paid for this gain in time is a considerable increase in 

memory as compared to the sum algorithm: if a number occupies n memory cells, 

the sum algorithm needs no more than 2n(l+k) cells to compute the symmetric 

functions of k arguments, while the present algorithm needs M (k) cells, a 

third degree polynomial of k. This number M(k) can not be reduced by storing 

each element of the final result successively in the same storage location; 

the M(k) cells are needed as working storage anyway. 
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Appendix 

Figure 1 depicts the algorithm for p = 1 .  Each number denotes a building 

block, that is, a G( 1 ) . The symbol '+' denotes a combination or concatenation . 

:rt is used here instead of the symbol EB for typographical reasons . The symbol 

'*' denotes a G• ( •) . The G (p-2 ) which must be stored for a while are put in a 

box. An iteration is finished at the '- ' -line. Each box directly above the 

wavy line is a G (p-1 ) , except when i = p = 1,  where the box directly above the 

wavy line is the G (p) itself. For each i, the result of the first combination 

is used to enter iteration i + l. This is shown by the arrows . The numbers 

'-1 '  and '0' for i = 1 denote the dummy sets. For typographical reasons, the 

'-1' and '0' are not shown in the combinations that involve real sets . 

Figure 2 shows the third iteration step from Figure 1. :rt is annotated 

with indications of the costs required for each part of the iteration . 

Figure 3 depicts the reduced algorithm. :rte legends are the same as for 

Figure 1. 





i =1 

- 1  · > 
O* · . . . . . . . .  : 

7+6* 

7+6+5* 

7+6+5+4* 

1
7+6+5+4+31 

2 

17+6+5+4+21 

2+3 

I7+6+5+3+2 I 
2+3+4 

17+6+4+3+2
1 

2+3+4+5 

I7+5+4+3+2 I 
2+3+4+5+6 

12+3+4+5+61 

/2+3+4+5+6+71 

i =2 

0 • · >  
1* · . . . . . . . . . .  : 
1+7* 

1 +7+6* 
1+7+6+5* 

I 1+7+6+5+4 I 
3 

/ 1+7+6+5+31 

3+4 

I 1+7+6+4+3 I 
3+4+5 

I 1+7+5+4+3 I 

3+4+5+6 

/ 1+6+5+4+31 

/ 1+7+6+5+4+31 

-·------·-----

i =3 i =4 i =5 

1 • · >  1+2 • · >  1+2+3 • · > 
1+2* · • • • • • • • · : 1+2+3* · • • • • • · : 1+2+3+4* · • • • · :  
1 +2+7* 1+2+3+7* 

1 1+2+3+4+71 1+2+7+6* 
11+2+3+7+61 

I 1+2+7+6+5 I 6 
5 

4 
/ 1+2+3+7+51 

1 1+2+3+4+6) 

I 1+2+7+6+4 I 
5+6 / 1+2+3+4+7+61 

4+5 
I 1+2+3+6+5 I 

1 1+2+ 7+5+41 
------------

4+5+6 / 1+2+3+7+6+51 

/ 1+2+6+5+41 -----------

/ 1+2+7+6+5�41 

----·------·-

Figure 1 .  
The algorithm for p = 7 

Cl 

1 
1+2 * 
1+2+7 * 
1+2+7 +6 *  i 1 +2 +7 +6 +5 1 

4 

c
2 
i 1+2 +7 +6 +4 j 

C
3 

4 +5 

c
2 

! 1 +2 +7 +5 +4 j 

C
3 

4+5+6 

c
2 
! 1+2 +6 +5 +4 I 

B \ 1 +2 +7 +6 +5 +4 

Figure 2 .  

i =6 

1+2+3+4 

/ 1+2+3+4+51 · . : 

I 1+2+3+4+5+7J 

The third iteration step with cost functions attached 

i =7 

1+2+3+4+5 

/ 1 +2+ 3+4+5+61 

/ 1+2+3+4+5+6+71 



7 *  
7+6 * 
7+6+5* 
7+6+5+4 * 
7+6+5+4+3.* 

1 7+6+5+4+3+2 1 

1 

1 7+6+5+4+3+1 1  

1+2 

1 7+6+5+4+2+1 1 

1+2+3 

1 7+6+5+3+2+1 1 

1+2+3+4 

1 7+5+4+3+2+1 1 

1 1+2+3+4+5+6 1 

1 1+2+3+4+5+6+7 1 

Figure 3. 
The reduced algorithm for p = 1 






