
Measurement and Research Department Reports 2006-2

Automated Assembly of Testsets: Fit in all Seasons

Angela J. Verschoor

Measurement and Research Department Reports 2006-2

Automated Assembly of Testsets: Fit in all Seasons

Angela J. Verschoor

Cito
Arnhem, 2006 l(enniscent,urn

This manuscript has been submitted for publication. No part of this manuscript may be copied
or reproduced without permission.

Abstract

A model for the assembly of testsets is introduced. This model con­
cerns the construction of several tests from a shared item pool, whereby
each test may have its own specifications and either a limited overlap is
allowed or no overlap at a.11.

In cases where a. limited overlap is allowed, either a non-linear formula­
tion must be chosen, or a linearization with many extra dummy variables
and restrictions. Therefore, a Genetic Algorithm to solve these models is
developed. A frequently occurring complication is epistasis, and several
strategies to prevent this are evaluated.

1 Introduction Since Thewrissen (1985) showed how to apply mathematical programrnine meth­ods in test assembly by formulating a target test information defined at a num­ber of discrete ability points, this topic has gained both theoretical as well as practical attention. Testing agencies try to reduce costs when producing their test forms by constructing item banks, from which items are selected. Usually, no single test forms are produced from item banks, but testsets, consisting of various test forms designed for several purposes. A model for the assembly of parallel test forms, in the sense that test characteristics such as test information function (TIF) are identical, is reported by Boekkooi-Timrninga (1990). A re­lated paper on a heuristic approach is Ackerman (1989), while Armstrong, Jones and Wu (1992) concentrated on the assembly of tests similar to an existing seed test using a network flow model. Sanders and Verschoor (1998) took a some­what different approach by using a greedy heuristic to minimize the distance between the item parameters in the different test forms.
2 Test· Assembly in Item Response Theory A key notion in item response theory (IRT) is that of a latent scale on which both the item difficulties and the test takers' abilities are defined. An IRT model defines the probability on an item score obtained by test takers as a function of the latent ability. A widely used ffiT model is the two parameter logistic (2PL) model for dichotomous items, with score O for a wrong answer and 1 for a correct answer. The 2PL model assumes the probability on a correct answer for item i and a candidate with ability iJ to be

(1)

where ai is referred to as the discrimination parameter and bi as the difficulty• parameter of item i. A usual way to build item banks from which tests are assembled, consists of two phases. First, items are constructed and, through pretests, data are gathered to estimate the item parameters. In the next phase, the items are selected for the tests while the item parameters are considered to be known without any error. Purpose of this selection is the assembly of a set of tests with minimal error of measurement, against minimal effort as expressed in, for example, test length. A statistical property of an item is Fisher information, also called the item information function, which for the 2PL model (Hambleton and Swaminathan, 1985) is given by
(2)

The variance of the ability estimator :0 is asymptotically equal to the inverse of the TIF value evaluated at iJ. Under the assumption of local independence
3

between item scores, the TIF is the sum of the information functions of the items in the test:
(3)

i Ai, a general aim of tests is to measure candidates abilities as accurately as possible, the variance of :0 should be minimized and, hence, the TIF should be maximized. Note that not only the TIF has a relation with the error of measurement, also the difficulties of the items has a relation with the TIF. Ai, the item information function reaches its maximum at {J = bi, the joint difficulties of the items control the shape of the TIF. Models for parallel test assembly can be described in a rather straightforward way: Assuming an item pool of size L, assemble J tests with the same test characteristics but with no items in common. Boekkooi-Timminga (1990) was the first to formulate such a model, using decision variables Xij to indicate whether item i is selected for test j. The model formulated by van der Linden and Adema (1998), which allowed other restrictions in their model as well, is the basis of the PARIMAX model formulated below. Let variables Xij denote the decision variables indicating whether an item is selected in test j or not.
Iu, is the item information in ability point {Jk, while Tkj is defined as the target information for test j at this point. ·Note that formulating the TIF target for each test separately gives the possibility to specify different characteristics for each test. Coefficients qin are the resource parameters of item i, indicating how many resources are needed to use it in the test, Cim the classification parameters having value 1 if item i belongs to category m and 0 otherwise. Qnj , c:n

j
and

c::ij are the desired use of resources and number of items in the classification categories for test j, respectively: maximize
subject to:

y

:EJikXij

y�
i

Tkj

L qinXij < Qnj
i

c:nj < L CimXij < c:i,j
i Pr (x) = l

L X ··<l i3 -
j x·. _ { 1, item i in test j
'3 - 0, else

(4)

'vk,j (5)

'vn,j (6)

'vm,j (7)

'vr,j (8) Vi (9)

Vi,j. (10)

The PARIMAX model formulated in (4) - {10) expresses the wish of the test assembler to produce a series of tests that maximize the TIF at selected ability levels, given desired shapes in the TIF targets in (5), and subject to various restrictions. The restrictions in (6) put a limit on the use of certain resources.
4

As can be derived from the additivity of the item information functions, the easiest way to maximize the TIF is to use all items in the pool. So, the resource restrictions in (6) limit the resources that the tests use, for example, test length or the total time allotted for test taking. In addition, the restrictions in (7) define a desired taxonomic ma.keup of the tests. Items are classified, for example, with respect to content domains or behavioral aspects. For all these categories minima and maxima are specified. A third group of restrictions in (8) concerns the item level. When building large item pools, it is almost inevitable that some items form a relation with others. These relations are referred to as interitem relations. Common examples of these item level relations are enemy sets and testlets. In enemy sets, one item may give away a clue to the answer on the other items, clearly an unwanted situation. Testlets are structures within the item pool that contain .several items that should stay together. An example of a testlet is a reading passage with a �;roup of test questions. Theunissen (1996) has shown that more complex relations exist frequently. These can be formulated as well, using Boolean operators V, /\ and ,. These relations can be transformed into restrictions based on differential payoff functions, denoted by Pr (x), as proposed by De Jong and Spears (1989). A last group of restrictions in (9) is added in order to stipulate the requirement of non-overlap, that is, an item is allowed to be used in no more than one test. The purpose of the model is to maximize the information in the tests at those ability points for which the ratio between the TIF and its target is minimal. Thus, the total information of each test is maximized while adhering to the preferred TIF shapes as much as possible. These models can be large for programs such as the NIVOR testing program for Dutch as a Second Language, produced by Cito (de Jong, 1998). For each of the four language skills Reading, Writing, Listening and Speaking compre­hension, testsets had to be developed for four levels of mastery. The first test was a placement test to assign an incoming learner to a course level. Then the progress of the learners was monitored during the courses by a number of tests. Finally, a certification test concluded the various courses. The placement tests . were relatively short and had a broad and flat TIF in order to determine the ap­propriate course level. The monitoring tests had increasing difficulty to reflect the growing proficiency during the courses. These were short tests with nar­row TIFs. The certification tests aimed at deciding whether the candidate had passed or failed the appropriate mastery level as accurately as possible. For this purpose, for each skill and each level an item bank was built with sizes ranging from 400 to 600 items, from which the tests were assembled. In those cases, standard integer linear programming techniques should be applied carefully. In order to control calculation times, Armstrong (1992) proposed a heuristic for the assembly of parallel test forms. As a first step, a group of items is selected into a seeding test. In practical situations, this might be an existing test. Thereafter, parallel forms are created by minimizing the distance between the item parameters of the new forms and the parameters of the seed test. The problem is modelled as a network flow problem. This approach, however, might impose rather strict demands on the item bank from which the items are drawn:
5

Numerous items must be present, identical both in classification as well as in
psychometric parameters. A more flexible approach in which items are selected
in such a way that their parameters do not have to be identical, but in which
the overall test characteristics are, would be welcome. Moreover, incorporation
of other types of restrictions is generally not possible with network flow models.
On the other hand, Verschoor (2004) has shown that genetic algorithms (GAs)
can be applied successfully to test assembly problems while still retaining a large
degree ·of flexibility.

The mapping between decision variables Xij and the chromosomes in a GA is
straightforward: Each variable forms a gene with alphabet {0, 1 }. Furthermore,
Verschoor (2004) has found that a population of 100 individuals, mate selection
proportional to fitness, uniform crossover, and a survival scheme in which the
best unique individuals survive, is an efficient combination to solve the class
of test assembly models. The fitness function is comprised of the objective
function and a penalty function related to the r�trictions, in such a way that
only positive values are possible:

g(x) =AL h c�=i qinXij - Qnj)
n,j

+ µ L h (c�j - Li CimXij) + µ L h (:Ei 'CimXij - c::ij)
m,j m,j

+ <.p L 1 - Pr (x) + � L h (L. Xij - 1)
. . 3 r,3 i

h(u) = { u, 0,

(11)

Coefficients A, µ, cp and � denote the penalty multipliers that are determined
dynamically similar to the strategy of Siedlecki and Sklanski (1989). Consider
for , consecutive iterations the individuals with the highest fitness. H for all
these, individuals all resource restrictions are met, multiply A by 1 - 8. H for
all individuals some resource restrictions are violated, multiply A.by 1 +c. Leave
A unchanged in all other cases, that is, that for some individuals all resource
restrictions are met while for other individuals there are violated restrictions.
The same rule is followed for the other penalty multipliers µ, cp and e.

Variations to the PARJMAX model can easily be formulated in cases, for
example, where a limited overlap is allowed. Define test overlap Vjl as the
maximum number of items to be included simultaneously in tests j and l. Next

6

to the test overlap, the item exposure must be controlled to prevent items from appearing in too many tests. Define Wi as the maximum number of tests that item i is allowed to appear in. Replace the restrictions in (9) by
LXijXil < V;z

i LX·· <W.·
1,3 - " j

Vj,l (12)
Vi. (13)

Penalty function g(x) is modified in order to reflect the incorporation of the overlap and exposure restrictions. Note that the restrictions in (12) are nonlinear, but can be linearized by the introduction of a dummy variable Zijl for each combination of item i and pair of test forms j and l, and related restrictions:
� z· ·z < Vii 6 i3 - 3 i Vj,l

Vi,j,l. (14)

(15) This, however, would result in the growth of the complexity of the model to such an extent that for sizeable item pools it is questionable that problems based on this linearization can be solved within reasonable time limits.
3 Compact Coding As can be seen above, using the conventional model formulations implies the introduction of many variables as well as restrictions on overlap control. This causes a significant increase in problem size compared to single test assembly. Various approaches have been studied in other fields to investigate the effi-. ciency of alternative representations (Hornsby and Pollack, 2001; Rothlauf and Goldberg, 2003; Toussaint, 2005), leaving no firm conclusion whether alterna­tive representations improve the performance. If certain restrictions are made redundant, the performance might be improved. If no overlap between the tests should be allowed at all, there is an alter­native problem formulation that uses a special representation scheme for the chromosomes. Define a coding scheme that maps gene Xi to the test assembly model: 1, if item i is selected in test 1 (0, if item i is not selected

Xi = 2, if item i is selected in test 2 • 3, etc. Now, the chromosome length is equal to the size of the item pool, one gene mapping onto a single item and vice versa, while a mapping directly based on the decision variables Xij would cause the chromosome length to be the number
7

of items times the number of test forms to be assembled. On the other hand, the
alphabet should accommodate all possible decisions regarding an item: values
1, ... , J to designate the test form for which the item is selected, or O in case
the item is not selected at all. In this way, overlap is not possible and the
corresponding restrictions in (9) are redundant. The other restrictions in {4) -
(8) remain unchanged.

Even though it may be expected that a GA based on compact coding would
consume considerably more time than for a similar single test assembly prob­
lem using a comparably large item pool, compact coding might deliver results
faster than traditional coding. Especially in the early phase of the optimization
process, compact coding might have a distinct advantage over traditional coding
as the majority of restrictions have become redundant.

4 Epistasis

Since the fitness is based upon y, and thus on the combination of ,{Jk and test j
for which y is minimal, it will be no surprise that the fitness function is epistatic
if no precautions are taken. All feasible solutions that have the same minimum
test in common have the same fitness. The individual with the highest fitness,
and thus with the highest minimum test, will have the greatest probability to
procreate and to survive. Within a few iterations all individuals will be based
upon the same minimum test having only differences in the other tests. From
that iteration on, all individuals have the same fitness. With all differences
located in the non-minimum tests, a search direction for improvement has been
lost, and the population has converged to a local maximum.

An obvious way to reduce the epistasis is to allow small differences in fitness.
This way, every solution will have a unique fitness and the search direction will
be restored. These differences should have some meaningful value in order to
propagate the optimization process.

Consider two different feasible solutions with equal fitness. These two can- .
didate testsets share the same rninironm test, while differences are located in
(at least one of) the non-minimum tests. It is easy to see that, given these two
testsets, it is easier to improve the minimum test, and hence the fitness, and
retain feasibility by an item migrating from a high non-minimum test to the
minim1rm test than by migrating from a low non-minimum test. Even if there
is no direct reason to do so, the fitness function should be based on at least one
non-miniro11m test in order to favour higher non-minimum tests.

Two strategies can be considered to overcome the epistasis:

• The use of a reward scheme that involves the non-minimum tests in the
fitness. For the PARJMAX model, this reward scheme could be _devised
as

f(x) =
Y +'YL3 Yi

l + g(x)

8

whereby restrictions in (5) are replaced by

Y < Yi
LfikXij

Y < _i __ _ j - ,.,, .Lkj

Vj

Vk,.i.

Solutions that have high non-minimum tests will get a higher reward than
those with relatively low non-minim11m tests. The purpose of a reward
scheme is to favour those individuals that have a higher chance to produce
offspring with more favorable objective function values. When the non­
minimum tests have a high TIF, it will be easier for crossover and mutation
to establish an exchange of items so that the minimum test is improved,
than when the non-minimum tests have a low TIF. The reward, however,
should be chosen carefully. A small increase in the TIF of the minimum
test, and therefore in objective, should be more profitable than an increase
in TIF of the non-minimal tests.

• The use of several alternating fitness functions in successive iterations. A
cycle of iterations is formed in which all fitness functions are evaluated
sequentially. H the cycle is very short, only individuals that do well ac­
cording to all fitness functions will survive. This approach can be regarded
as the introduction of seasons, analogous to seasons in biology. Individuals
that do well in all seasons have a larger chance of survival than individ­
uals that thrive in one season but encounter problems in the other. For
multiple test assembly, a cycle of two seasons can be used. In the odd
iterations, the original fitness function as described in (11) is evaluated
while in the even iterations a fitness function is evaluated that also takes
the non-minimum teats into account. Define this alternative fitness as

In effect, individuals that have a high TIF for the minimum test as well
have a high information function for the other tests will be favoured. This
appro_ach has the advantage of being more robust than the reward scheme,
since too high a reward could- interfere with the optimization process. The
disadvantage, however, is that in half of the iterations a fitness function
is evaluated that has only an indirect bearing on the objective function.
Therefore, the process might slow down somewhat and more iterations are
needed to reach good solutions.

5 Simulations

Simulations have been conducted in order to investigate the effectiveness of
the various approaches in preventing epistasis and solving the test assembly
problems. Two questions have to be answered: What strategy is most effective

9

in solving test assembly problems: reward, seasons, or a combination thereof?
Second, does compact coding accelerate the optimization process in case of non­
overlap?

To answer these questions, three different test assembly problems were used.
All three problems were based upon an item pool consisting of 500 items with
simulated parameters according to the twcrparameter model with log(a) ~

N(0, 0.4) and {3 ~ N(0, 1). All items were classified on two different dimen­
sions. The first dimension consisted of 4 categories labelled as 101, 102, 103
and 104. These categories were filled with approximately 250, 125, 85 and 40
items, respectively. The second dimension contained categories labelled as 201,
... , 210, which contained approximately equal numbers of items.

The simplest test assembly problem, Problem 1, involved the assembly of two
parallel tests. For each test, four restrictions on the shape of the TIF ('61 = -1.5,
'62 = -0.5, -Da = 0.5, '64 = 1.5 with TiJ1 = 4, T,tJ2 = 8, TiJ3 = 8, T,tJ4 = 4) and one
resource restriction, Ei Xij < 40, were defined. No content restrictions based on
the classification structure described above were used and item overlap was not
allowed. P roblem 2 was an extension of Problem 1, in that it involved assembly
of three parallel tests with a similar TIF as in Problem 1 with zero overlap. All
tests had 40 classification restrictions. From each combination of two categories,
the first from the range 101, ... , 104, and the second from the range 201, ... , 210,
exactly one item was required.

Furthermore, the two coding schemes were combined with the four combi­
nations of epistasis prevention strategies, resulting in eight different conditions.
The optimization process was stopped after LK log(LK) iterations, where L is
the number of decision variables, and K is the total number of restrictions, ex­
cluding the overlap restrictions. Verschoor (2004) has shown that in general for
test assembly models this stopping criterion gives satisfactory solutions. Thus,
Problem 1 was stopped after 92103 iterations while Problem 2 was stopped after
750592 iterations, after which the best solution fmmd so far was presented. For
Problem 1, 400 replications were performed. For Problem 2, this number was
200. In the dynamic penalty adaptation scheme, r was chosen to be 80, while {j •
was set equal to 0.03, c to 0.02, while reward , was equal to 0.0001.

The average best fitnesses and their standard deviations are presented in Ta­
ble 1. As all strategies gave feasible solutions in all replications and all fitnesses
were based on feasible solutions, it follows that f(x)T,{J,. is a lower bound on the
TIFs of solution x realized at '61,;. Therefore, v' (\ is an upper bound on the

I :i, T-o,.
standard error of measurement at ,Ok · Note that this argument does not hold
for the strategies involving a reward: In the best solutions on which the data
-in Table 1 are based, a total reward in the order of magnitude of 0.001 - 0.002
was observed, and this reward should be subtracted from the fitness before
estimations of the TIFs can be made.

Furthermore, it can be seen that there is no strategy that is clearly best
overall. For Problem 1, a relatively small problem, compact coding offered
no advantages over binary coding. For Problem 2, a larger problem, compact
coding performed better in combination with either the seasons approach or

10

Table 1: Best Fitness Function Values

Strategy

None-Binary
None-Compact
Reward-Binary
Reward-Compact
Seasons-Binary
Seasons-Compact
Both-Binary
Both-Compact

Best Fitness
Problem 1 Problem 2
M SD M SD

3.911 0.025 3.105 0.038
3.836 0.050 3.022 0.072

3.919 0.018 3.101 0.037

3.844 0.054 3.016 0.085
3.914 0.017 3.101 0.022
3.902 0.011 3.123 0.029
3.869 0.029 3.101 0.021
3.899 0.011 3.122 0.023

with both seasons and reward scheme.

11

4

3.5

I
3

1&. 2.5

2

1 .5

100

4

3.9

3.8

i
5 3.7

3.6

3.5

Binary Coding

1000 10000
Iteration

Com pact Coding

-+- None

-s-- Reward
-+- Seasons

->E-- Both

100000

➔-None
-a- Reward
-+-Seasons
..- Both

3.4 --t--

- - -
-

-
�

- - - - -

�

- - -
-

----.

100 1000 10000 100000
lteraUon

FIGURE 1. Average Best Fitness during Optimization after Reaching

Feasibility (Problem 1)

Figure 1 shows the average fitness of the best solution during the iterations.
It can be seen that compact coding gave good solutions much faster than binary
coding. While in Problem 1 all strategies yielded feasible solutions within 500
iterations, the average fitness for the strategies that involved seasons was over
3.8. For binary coding, these fitness values were reached after 16000 iterations.

Note that for compact coding the performance of the seasons approach co­
incided almost entirely with the combination of both approaches. Apparently,
adding a reward scheme to the seasons approach had no effect for compact cod­
ing. It is interesting to see that this was different for binary coding. In the first
10000 iterations, the combination performed better than either single approach,
after which the other strategies caught up and eventually performed somewhat
better.

12

3.15
3.1

3.05
3

I
2.95

S 2.9
ii: 2.85

2.8
2.75

2.7

Binary Coding

-+- None
-B--Reward

-+- Seasons

--K- Both

2.85 +--------,-------,-------,
1000

3.15
3.1

3.05
3

I
2.95

S 2.9
ii: 2.85

2.8
2.75
2.7

10000
Iteration

Com pact Coding

100000 1000000

-+- None
-'.3--Reward

-+- Seasons

-w-Both

2.65 +--------,,---------,-------,
1000 10000 100000 1000000

Iteration

FIGURE 2. Average Best Fitness during Optimization after Reaching
Feasibility (Problem 2)

Figure 2 shows that for Problem 2 the difference between binary coding and
compact coding was even larger than for Problem 1. The GA with compact

coding found feasible solutions within 2000 iterations for the strategies involv­
ing seasons, but it lasted 32000 iterations before all replications of the binary
coding with seasons found a feasible solution, and it took 64000 iterations with­
out seasons. From that point, however, the best fitnesses that were found for
the seasons approach were of the same order of magnitude as those for the com­
pact coding scheme. For the approach without seasons, binary coding produced
slightly better solutions than compact coding at this stage. Note that for Prolr
lem 2, the results for the seasons approach coincided almost fully with those for
the combination of approaches. This could be observed not only for compact
coding, as with Problem 1, but also for binary cod.iJ;ig. Even more, also the
performance for using no scheme coincided with the reward scheme in case of
binary coding. In case of compact coding, the reward scheme performed even
slightly worse than using no scheme at all.

13

5.1 A Testset with Overlap

The third problem in the simulation studies concerned. the assembly of three
tests with different characteristics, similar to the case of the monitoring tests in
the NIVOR testing program. All three tests had length 40 and were subjected.
to the same content restrictions: Category 101 had to be represented by 15
items, category 102 and 103 by 10 items each, and category 1 04 by 5 items.
The tests had an increasing difficulty in order to represent a growth in ability
level over the test administrations. For each test, a TIF target was defined at
three ability points with T,tJ

1
= 8, T,tJ

2
= 8, TiJ

3
= 4, while the ability points

varied for each test. For test 1 these were: {}1 = -1.5, .i2 = -0.5, and .i3 = 0.5;
for test 2: .i1 = -1.0, .i2 = 0, and {}3 = 1.0, and for test 3: .i1 = -0.5, .i2 = 0.5,
and iJ3 = 1.5. The test overlap was restricted to a maximum of four items and
each item was allowed to appear in at maximum two tests.

Since Pr�blem 3 allowed for overlap between the tests, compact notation
could not be used. Thus, four epistasis prevention strategies were simulated.:
the reward scheme, the seasons approach, both, and using no strategy. Sim­
ilar to Problem 1 and Problem 2, the optimization process was stopped after
LK log(LK) iterations, where L is the number of decision variables, and K is
the total number of restrictions, excluding the overlap restrictions. P roblem
3 was stopped after 588424 iterations, after which the best solution found so
far was reported. For each strategy, 200 replications were performed.. In the
dynamic penalty adaptation scheme, r was chosen to be 80 while 8 was 0.03
and c was 0.02.

The average best fitnesses and their standard deviations are presented in
Table 2.

Table 2: Best Fitness Function Values for Problem 3

Strategy
None-Binary
Reward-Binary
Seasons-Binary
Both-Binary

Best Fitness
M SD

4 .413 0.106
4.449 0.116
4.495 0.032
4.482 0.045

From Figure 3 it can be seen that the strategies did not differ very much
in effectiveness. The strategies involving seasons performed somewhat worse
during the first 10000 iterations, after which they performed. somewhat better
than the strategies without seasons.

14

4.5

4.4

4.3

4.2

I 4.1
s 4
ii: 3.9

3.8
3.7
3.6

Binary Coding

-+-None

-&-Reward

--season.s
--H- Both

3.5 -----�--------�---� 100 1000 10000
Iteration.

100000 1000000

FIGURE 3. Average Best Fitness during Optimization after Reaching
Feasibility (Problem 3)

The question which strategy prevents epistasis best for the assembly of test­
sets cannot be answered simply. If the optimization is stopped after a relatively
large number of iterations, as was the case in our simulation study, using a
reward scheme seems to be the best choice for relatively simple models like
Problem 1. For more complicated models, such as Problem 2, compact coding
combined with either the seasons approach or both seasons and reward schemes,
seemed to be the favorable choice. In cases where overlap restrictions do not
allow the use of compact coding, such as in Problem 3, the seasons approach
seemed to perform best.

From a practical point of view, however, the stopping criteria seemed to be
rather strict, and it might be preferable to give a reasonably good solution at
an earlier moment. When the optimization is stopped at an earlier moment,
compact coding combined with seasons or with both the seasons and reward
schemes seemed to be the best choice.

6 Conclusions

A model for the assembly of testsets was proposed in this study. The idea behind
the model is the observation that in some testing programs, sets of test forms
are developed all originating from a common item pool, and where a limited
amount of overlap is allowed. The test specifications may vary between test
forms, as each may serve a different purpose within the testing program. It is
shown that a genetic algorithm is capable of solving these models efficiently.
Especially if a limited overlap is allowed, the resulting test assembly models are
either non.linear or need many extra dummy variables and restrictions, which
may cause algorithms traditionally used in the field, based upon integer linear
programming, to fail.

Should no overlap between tests be allowed, a compact coding using a more

15

elaborate alphabet improves the performance significantly, especially when com­
bined with an approach that mimics seasons, evaluating different fitness func­
tions in consecutive iterations. Compact coding is an effective method in pr�
venting epistasis inherent to the model formulations of the assembly of testsets.

References

Ackerman, T. (1989). An alternative methodology for creating parallel tests
using the IRT-information function. Paper presented at the annual meet­
ing of the National Council on Measurement in Education, San Francisco,
CA.

Armstrong, R., Jones, D., and Wu, I. (1992). An automated test development
of parallel tests from a seed test. Psychometrika, 57:271-288.

Boekkooi-Ti.mminga, E. (1990). The construction of parallel tests for IRT-based
item banks. Journal of Educational Stati.stics, 15:129-145.

de Jong, J. (1998). NIVOR toetsen 1998 handleiding. Arnhem: Cito. in Dutch;
Test Manual.

De Jong, K. and Spears, W. (1989). Using genetic algorithms to solve NP­
complete problems. In Schaffer, J., editor, Proceedings of the Third Inter­
national Conference on Genetic Algorithms, pages 124-132. San Mateo,
CA: Morgan Kaufmann.

Hambleton, R. and Swaminathan, H. (1985). Item Response Theory: Principles

and Applications. Boston: Kluwer-Nijho:ff.

Hornsby, G. and Pollack, J. (2001). The advantages of generative grammatical
encodings for physical design. In Proceedings of the 2001 Congress on
Evolutionary Computing, pages 60o-607. IEEE Press.

Rothlauf, F. and Goldberg, D. (2003). Redundant representations in evolution­
ary computation. Evolutionary Computation, 11:381-415.

Sanders, P. and Verschoor, A. (1998). Parallel test construction using classical
item parameters. Applied Psychological Measurement, 22:212-223.

Siedlecki, W. and Sklanski, J. (1989). Constrained genetic optimization via
dynamic reward-penalty balancing and its use in pattern recognition. In
Schaffer, J., editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 141-150. San Mateo, CA: Morgan Kaufmann.

Theunissen, T. (1985). Binary programming and test design. Psychometrika,

50:411-420.

Theunissen, T. (1996). Combinatorial Issues in Test Construction. PhD thesis,
University of Amsterdam.

16

Toussaint, M. (2005). Compact genetic codes as a search strategy of evolutionary processes. In Wright, A. , Vose, M. , De Jong, K., and Schmidt, L., editors,
Foundations of Genetic Algorithms 2005, pages 75-94. Berlin: Springer. van der Linden, W. and Adema, J. (1998). Simultaneous assembly of multiple test forms. Journal of Educational Measurement, 35:185-i98. Verschoor, A. (2004). ffiT test assembly using genetic algorithms. Measurement and Research Department Reports 2004-4, Arnhem: Cito.

17

