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Abstract 

The problem of maximizing a ratio of variance components given 

a budget constraint is considered. The proposed solution employs 

analytical and numerical methods and is an improvement of two 

existing procedures. The current procedure is exemplified for three­

and four-way designs. 

Keywords: generalizability theory; ratios of variance components; 

balanced designs; Lagrange method; branch-and-bound algorithm. 





Introduction 

Consider the balanced three-way random effects model with one 

observation per cell 

where µ. is a constant and the IA), {B), {c.J, IABi), {Aci.J, {Bc
j

.J, 

and {Eij
.J are independent normals with zero means and variances 

2 2 2 2 2 2 2 OA, 08, Oc, OAB, OAc, a8c, Oe, respectively. 

Parameters expressing the proportion of total variability are used in all 

fields of applications in which the variance component model is employed. In 

genetics, ratios of variance components are used as estimates of genetic 

heritability (e.g., Graybill & Wang 197.9). In psychometrics, the variance 

components ratio 

(1) 

is an important parameter (e.g., Cronbach, Gleser, Nanda & Rajaratnam 1972). 

This parameter is an indicator of the degree of precision provided by a 

measurement instrument in which factor A constitutes the objects of 

measurement, that is, examinees, whereas factor B and C each constitute sets 

of conditions of measurement, for example, n
j 

questions and nk raters. The 

number of measurements per examinee equals n
j

nk . 

In (1), o�, o!c and o! constitute the measurement error. From (1), it 

can be inferred that measurement precision can be improved by increasing 

n
j 

and nk . However, because in practice the administration of measurements 

has to be conducted under the constraint of limited resources, the optimal 

allocation of n
j 

and nk is of critical importance. A procedure for maximizing 

p A under the constraint of a fixed number of measurements was first proposed 

by Woodward and Joe (1973). With this procedure, however, non-optimal 

solutions are likely to occur because of the equality constraint on 
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n
j
nk . Moreover, the generalization of Woodward and Joe's procedure as well as 

the procedure developed by Sanders, Theunissen, and Baas (1991), which does 

provide optimal solutions under a budget constraint, to four-way and other 

designs becomes very complex. 

Addressing the same problem of maximizing PA under a budget constraint, 

an alternative procedure is presented in this paper. In section 4.2, the 

maximization problem of the three-way random effects model is formulated as an 

optimization problem. In section 4. 3, a two-step procedure for solving �his 

problem is proposed and illustrated. The solution for the maximization problem 

of the four-way random effects model is presented in section 4. 4. 

Optimization Problem 

Maximizing (1) is equivalent to minimizing the objective-function 

0
2 

e 

(2) 

Minimization statement (2) refers to the value of the objective- function with 

different values for n
j 

and nk . 

A complete problem specification includes two other constraints. First, 

the constraint that specifies the available resources, that is, the budget. As 

costs in general vary in proportion to n
j
nk, the cost function is defined as 

where Cj
k denotes the cost of one measurement, for example, the rating by one 

rater of the answers of all examinees in the sample to one question, and 

c the budget. Assuming that the cost of one measurement is the same for each 

examinee, the cost function can be written as 

= M, ( 3) 
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/: 

nk be integer values and that each factor has at least one condition of 

measurement, a lower bound integer constraint is specified 

n
j 

and nk integer � 1 ( 4) 

Proposed Solution Three-Way Design 

Optimal integer solutions for n
j 

and nk of the optimization problem 

defined by (2), (3) and (4) are obtained in two steps. In the first, solutions 

are derived for a continuous relaxation of constraint (4) , that is, 

n
j

, nk > o. These optimal continuous solutions are used in the second step as 

the bounds in a branch-and-bound procedure (see Papadimitriou & Steiglitz 

1982, p. 443) . 

4.3.1. Continuous Solution 

The continuous problem can be solved by using Lagrange multipliers 

method. The Lagrange function is given by 

ok 
2 

0
2 

L (nj
, n.1c, A) + 

OAc + e + A (n
j
nk - M). = 

n
j 

nk n
jnk 

The necessary conditions for the minimum of f (n
j
, n.1c) are 

6L a� 0
2 

e + Ank 
= o, 

5n
j 

= -- --

n� njnk 

6L 
2 

0
2 

OAC e + An
j 

o, 
6nk 

= -- --

ni 
2 n

j
nk 

From (6), (7) and (8) the optimal continuous solutions are derived as 

nj ( akl
1/2 

= M -- ' 2 
OAC 

and 

3 

(5) 

( 6) 

( 7) 

(8) 

( 9) 



( o!c]1/2 
= M--

o!_a 
(10) 

Note that because of constraint (3), the minimization of (2) without the error 

term will give the same solutions. 

4.3.2. Integer Solution 

The optimal continuous solutions, derived in the preceding section, are 

used as a starting point for a branch-and-bound algorithm to obtain the 

• • 
optimal integer solutions. Assume that n

j and nk are the optimal continuous 

solutions, and both values are not integer. If l nj J denotes nj rounded down 

and r n; l denotes nj rounded up, two problems have to be solved. The first 

problem is 

minimize 
o!_a 

subject to n
j 

nk � M, 

+ 
0

2 
e 

In a solution (n
j
, nk) for this problem, n

j 
= l n; l must hold, 

because if Ilj � l n; J, the rounding down constraint would be irrelevant 

and a non-integer solution would result. Hence, the solution for the first 

problem is n
j 

= l n; J and Ilk = M/n
j

, or n
j 

= 1 and Ilk 
= M. The second 

problem differs from the first in that the rounding down constraint is 

replaced by the rounding up constraint n
j 

;:: f nj l. The solution for the 

second problem is n j = r n; l and Ilk 
= M/ n 

j
. Each of these two problems yield 

two new problems with additional constraints regarding nk whenever the value 

Ilk is non-integer. If, for instance, n k is non-integer in ti.1e first problem, 

the constraint sets for the following two problems are given by (1) nk :::: 1, 

n
j

;:: f n
j 

l, and (2) nk :::: 1, 1� n
j 

� l n
j 

J. Branching continues until either 
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an integer solution or an infeasible constraint set is found. Each time an 

integer solution is obtained during the branching process, its value is 

compared with that of the previous best solution and accepted as the new best 

solution or rejected as such. At the end of the process, the current best 

solution is the optimal integer solution. 

4.3.3. Example 

For the balanced three-way random effects model crossed design the 

"2 example from Sanders et al. (1991 ) with variance components aA = 5.435, 

�AB2 " 2 " 2 , d 
• • f , u = 3. 421, OAc = 1. 140, and Oe = 11. 850 is use . The obJective- unction 

for this example is 

minimize 3.421 + 1.140 + 11.850 

n-1 

Assuming that conditions of factor B, for example, questions, and factor 

C, for example, raters, cost nothing, but that the rating by one rater of the 

answers of all examinees in the sample to one question costs 80 dollars, and 

that the budget is limited to 3000 dollars, the budget constraint for this 

example is stated as 

( 1 1) 

" " 
The optimal integer solutions n

j 
and n k for this optimization problem are 

derived in two steps. First, using equations (9) and (10), the optimal 

continuous solutions nj = 10. 6 and n; = 3. 5 are obtained. Second, because 

both solutions are non-integer, a branch-and-bound algorithm is employed to 

obtain the optimal integer solutions. For the problem with additional 

constraint n
j 

!5: l nj J = 10, one finds a solution n
j 

= 10, Ilk
= 3. 7 and for 

the problem with n
j 

:2:: f nj l = 11, a solution n
j 

= 11, Ilk
= 3. 4. Further 

branching yields four problems with constraint sets, including n
j

, nk :2:: 1, 

The search process is shown in Figure 1. 
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infeasible 

FIGURE l 

Search-Tree for the Three-Way Design Example 

starting from the optimal continuous solution in Node 1, the 

strategy to traverse the search-tree is depth-first and from left to 

right, as indicated by the numbering of the nodes. Node 3 produces the 

first candidate solution, which is improved by the solution found in 

Node 5. The solution in Node 6 does not satisfy the budget constraint 

of 3000 dollars and is therefore an infeasible solution. Other 
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infeasible solutions are found in Node 10 and 11. The solution found in Node 9 

is equal to the solution found in Node 5. From the search process in Figure 1 

and the solutions for this cost function presented in Table 1, it can be 

concluded that a more exhaustive search will result in either infeasible 

solutions or solutions that do not improve the solutions in Node 5 and 9. 

Therefore, the solution in Node 5, (n
j

, nk ) = (9,4), that is, nine questions 

for which the answers of all examinees have to be rated by four raters, or the 

solution in Node 9, (n
j
, Ilk) = (12, 3), that is twelve questions rated by three 

raters, are the optimal integer solutions for this problem. 

TABLE 1 

Values of n
j
, nk, Variance Components, pA and c for Two Cost Functions 

1. 

2. 

"2 "2 "2 

cj
n

j 
nk n

j
nk ci�ink 

,.. 2 (JAB CJAC a e n
j (JA PA n

j 
nk n

i
nk 

Cjk = 80 Dollars, C = 3000 Dollars 

10.6 0 3. 5 37. 5 3000 5.435 . 322 .322 .316 .850 

9 0 4 36 2880 5.435 .380 . 285 . 329 . 845 

11 0 4 44 3520 5.435 . 311 . 285 .269 .863 

10 0 3 30 2400 5. 435 .342 .380 .395 .830 

11 0 3 33 2640 5.435 . 311 . 380 .359 .838 

10 0 4 40 3200 5. 435 . 342 . 285 .296 .855 

12 0 3 36 2880 5. 435 .285 .380 .329 .845 

13 0 3 39 3120 5. 435 .263 .380 .304 . 852 

ci = 40 Dollars, C
jk = 80 Dollars, and C = 3000 Dollars 

8 320 4 32 2560 5. 435 .428 .285 .370 .834 

9 360 4 36 2880 5. 435 . 380 .285 .329 .845 

10 400 3 30 2400 5.435 . 342 . 380 .395 . 830 

11 440 3 33 2640 5. 435 .311 .380 .359 . 838 

Although the budget constraint employed here was not taken from an 

actual measurement problem, the example is realistic since in most 
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C 

3000 

2880 

3520 

2400 

2640 

3200 

2880 

3120 

2880 

3240 

2800 

3080 



cases, differences between the number of measurements will have more 

impact on the budget than on PA · This means that in many cases nearly 

the same measurement precision can be obtained for a considerably 

smaller budget. Table 1 also contains the solutions for a second cost 

function 

where (C . =) 
J 

(12) 

40 dollars denotes the cost of one question. For all 

linear cost functions with the n
1
nk measurements taking up the major 

part of the budget, the optimal continuous solution for a problem with 

cost function (11) can be used as a starting point of a branch-and­

bound algorithm for a problem with cost function (12). The optimal 

continuous solution n1 for a problem �ith cost function (11) is the 

upper bound of n1 for a problem with cost function (12). It can be 

inferred from the results presented in Table 1, that a simple branch­

and-bound algorithm will produce the optimal integer solution for 

problem (12), that is, eight questions rated by four raters. 

Proposed Solution Four-Way Design 

Consider the balanced four-way random effects model with one 

observation per cell 

yijkm 
= µ. + Ai + BJ 

+ Ck 
+ Dm 

+ ABiJ 
+ ACik 

+ ADim 
+ BC1k 

+ BD1m 
+ 

CD1cm 
+ ABCijk 

+ ABDiJm 
+ ACDiJm + BCDJ1cm 

+ EiJkm' 

i = 1, ... , ni, j = 1, ... , n
J

, k = 1, ... , nk, m = 1, ... , nm, 

where µ. is a constant and the {Ai} I <B) I {c) I w) I {ABi) I {Aci) I 

{ADim} I {BCjk} I {BDjm} I { CDkm} I {ABcij) I {ABDijd I {Acvijd I {BCDjkm} I 

and {Eij
iar/ are independent normals with zero means and variances 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 

CJ A , CJ s, CJ c, a v, CJ AB , a Ac, CJ AD, CJ Bc, CJ BD, CJ cD, CJ ABc, a ABD, CJ Acv, CJ scv, 

2 and 0 8 , respectively. The maximization of the generalizability 

coefficient for the four-way design, amounts to minimizing 
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2 2 2 2 2 2 2 

CJ AB CJ AC CJ AD CJ ABC CJ ABD CJ ACD O' e =--+--+--+---+---+---+----
nj nk nm njnk nJnm n�m 

=M. 

The application of the Lagrange multipliers method to this minimization 

problem results in the equations 

2 2 

CJ�+ 
CJABD 2 CJACD 

ni 
OAD + 

nk 
nm = nk nm = nJ and 

2 2 

2 CJABc 2 CJABC 
OAc + 

nJ 
(JAB + 

nk 

2 

CJACD 
OAc + 

nm 
nk = nJ 2 

CJ� + 
CJABD 

nm 

As second-order interaction variance components are generally very 

small, the above equations can be written as 

and 

From these equations and the cost function, nearly optimal continuous 

solutions for nj
, nk and nm can be derived. These solutions are used 

as the starting point for a branch-and-bound algorithm analogous to 

that of the three-way design. 

Conclusions and Discussion 

The results from this and other studies (Sanders, Theunissen & 

Baas 1989, 1991) show how integer optimization methods can be applied 

to find the optimal design for the maximization of a ratio of variance 

components. In general, these methods are ultimately suitable for 

solving problems for which analytical solutions are hard to obtain. One 
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of these problems - already discussed by Scheffe in 1959 (pp. 236-

238) - is to find the optimal design for the estimation of (ratios of) 

variance components. It was only recently, however, that Mukerjee and 

Huda (1988, pp. 78-79) suggested the use of enumeration methods for 

solving this problem under restrictions on total cost and other 

practical constraints. In this article a procedure is presented which 

can be used to solve some specific design problems. 
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