Direct naar inhoud

Using conditional association to identify locally independent item sets

Door: Straat, H., van der Ark, A., & Sijtsma, K. | 05-12-2016 This paper investigates three special cases of conditional association and implemented them in a new procedure that aims at identifying locally dependent items, removing them from the initial item set, and producing a subset that is locally independent.

The ordinal, unidimensional monotone latent variable model assumes unidimensionality, local independence, and monotonicity, and implies the observable property of conditional association. We investigated three special cases of conditional association and implemented them in a new procedure that aims at identifying locally dependent items, removing these items from the initial item set, and producing an item subset that is locally independent. A simulation study showed that the new procedure correctly identified 89.5% of the model-consistent items and up to 90% of the model-inconsistent items. We recommend using this procedure for selecting locally independent item sets. The procedure may be used in combination with Mokken scale analysis.

Ga naar het artikel
Medewerker aan telefoon

Kunnen we je helpen?

Stel je vraag via onze kanalen of kijk in de veelgestelde vragen.
Voor scholen: Vergeet niet om het brinnummer bij de hand te hebben en/of in de mail te vermelden, zodat we jouw vraag sneller kunnen behandelen!

Bereikbaar Ma t/m vr 08.30 tot 15.00 uur
Bellen (026) 352 11 11
E-mail klantenservice@cito.nl

Zoeken