Direct naar inhoud

On the Use of Mixed Markov Models for Intensive Longitudinal Data

Door: Haan-Rietdijk, S. de, Kuppens, P., Bergeman, C. S., Sheeber, L. B., Allen, N. B., & Hamaker, E. L. | 28-09-2017 Markov modeling presents an attractive analytical framework for researchers who are interested in state-switching processes occurring within a person, dyad, family, group, or other system over time.

This article focusses on the application of mixed Markov models to intensive longitudinal data sets in psychology. The article makes clear how specifications of a Markov model change when continuous random effect distributions are included, and how mixed Markov models can be used in the intensive longitudinal research context. Advantages of Bayesian estimation are discussed and the approach is illustrated by two empirical applications.

Ga naar het artikel
Medewerker aan telefoon

Kunnen we je helpen?

Stel je vraag via onze kanalen of kijk in de veelgestelde vragen.
Voor scholen: Vergeet niet om het brinnummer bij de hand te hebben en/of in de mail te vermelden, zodat we jouw vraag sneller kunnen behandelen!

Bereikbaar Ma t/m vr 08.30 tot 15.00 uur
Bellen (026) 352 11 11
E-mail klantenservice@cito.nl

Zoeken