Direct naar inhoud

Conditional Statistical Inference With Multistage Testing Designs

Door: Zwitser, R.J., Maris, G.K.J. | 01-01-2012 For several decades, test developers have been working on the development of adaptive test designs in order to obtain more efficient and robust measurement procedures.

In this paper it is demonstrated how statistical inference from multistage test designs, where students are administered different modules of items depending on their responses to earlier modules, can be made with the method of conditional maximum likelihood. It is shown how the match between item difficulty and student proficiency may result in a better fit of simple measurement models, owing to the avoidance of undesirable response behavior like slipping and guessing. Attention is given to the assessment of model fit. The results were illustrated with simulated data as well as with real data.

Read more
Medewerker aan telefoon

Kunnen we je helpen?

Stel je vraag via onze kanalen of kijk in de veelgestelde vragen.
Voor scholen: Vergeet niet om het brinnummer bij de hand te hebben en/of in de mail te vermelden, zodat we jouw vraag sneller kunnen behandelen!

Bereikbaar Ma t/m vr 08.30 tot 15.00 uur
Bellen (026) 352 11 11
E-mail klantenservice@cito.nl

Zoeken